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CHAPTER 1
INTRODUCTION

Microsimulation models of economic systems have become widely
used in recent years. Like any simulation model, they are most powerful
when used within the context of a statistically designed experiment.
Unfortunately, not much attention has been given to the experimental
design of microsimulation models, particularly to the use of replicated
observations on the models. The structure of the two-way random effects
model naturally lends itself to use as a metamodel for the analysis of the
output from microsimulation experiments. The use of Bayesian analysis
permits the incorporation of the model user's experience and knowledge
into the analysis by use of prior distributions on model parameters.

Chapter 1 contains an introduction and overview of this work. An
example microsimulation model is presented in Chapter 2. The two-way
random effects model is presented as a useful metamodel for the
microsimulation experiment in Chapter 3, which includes a comparison of
the frequentist theory and Bayesian theory approaches to the analysis of
this model. The Bayesian methodology is developed in Chapters 4 and 5.
Demonstrations of the Bayesian analysis methodology are presented in
Chapter 6. A summary and consideration of further research possibilities
are presented in Chapter 7.

In Section 1.1 the general nature of microsimulation models and

some experimental design issues are discussed. In Section 1.2 the two-way



random effects model is proposed as an appropriate metamodel for
microsimulation experiments. Section 1.3 discusses the use of the mean
response of an as yet unobserved replication of the microsimulation model
as the system performance measure. In Section 1.4 the relative merits of
Bayesian theory and frequentist theory approaches to inference are
compared. And in Section 1.5 an overview is presented, describing the

objective, methodology, conclusions and impact of this work.

L1 Microsimulation Model

Microeconomic simulation models are simulation models of
microeconomic decision units; they are also referred to as microsimulation
models, used throughout the remainder of this work, as well as
microanalytic models or microdata simulation models. They are
computer-implemented, stochastic models of the behavior of heterogeneous
economic decision units in an economic environment over time. The
decision units have descriptive characteristics which are stochastically
updated in response to the economic environment; the state of the
environment is represented by model parameters, referred to as operating
characteristics. Commonly used decision units are individuals,
households, business firms, industries, and government units. Typically,
the collection of individual unit characteristics are aggregated, in any
particular time period, to describe the overall state of the economy.

Microsimulation models can be described as Monte Carlo sampling
distribution models. They are different from the simulation models of
dynamic queueing systems which have homogeneous traffic units
simultaneously competing for scarce resources. Also, they are different in

that simulation queueing models are highly dependent on event



scheduling. The microsimulation models contain traffic units that are
heterogeneous microeconomic decision units; subsequently, the term
decision unit will be used to refer to a traffic unit in a microsimulation
model. The decision units travel recursively through the model, making a
pass through the model for each time period, without interacting or
competing with other decision units. During each pass, each decision
unit's descriptive characteristics are stochastically modified in response to
the state of the economy. Microsimulation models are run for a specific
number of time periods, so they are treated as terminating condition
simulation models, not steady state models. As such, multiple observations
on system performance measures are obtained by the method of
replications, requiring that each replication of the model begins with an
identical initial state but uses a different set of random numbers. The
identical initial state requires that the same set of operating characteristics
and the same set of decision units, each with the same initial set of
descriptive characteristics, are used.

Microsimulation models are used widely in government offices,
universities and private research institutions, and private contractors; the
models are used in the United States, Canada, and several European
nations. In the United States government, microsimulation models are
used by various departments and agencies, such as the Congressional
Budget Office, the Joint Tax Committee, Office of Tax Analysis of the
Treasury Department, the Department of Health and Human Services, the
Department of Agriculture, and the Office of Management and Budget.
Indeed, Betson (1990, p. 425) stated that the majority of budget estimates are
produced by microsimulation techniques. For examples of uses of

microsimulation models see: Orcutt, Caldwell, and Wertheimer (1976);



Haveman and Hollenbeck (1980); Feldstein (1983); Nakamura and
Nakamura (1985b); Bennett and Bergmann (1986); Kraemer and King
(1986); Orcutt, Merz, and Quinke (1986); and Brunner and Petersen (1990).

In Chapter 2, a microsimulation model of the labor-force
participation of married women is described. This model is based upon one
of the models given in Nakamura and Nakamura (1985a); it is used as the
example microsimulation model throughout this work. In this model, the
decision unit is a married woman, subsequently referred to as a wife, and
the dependent variable is the wife's annual earnings. The sample output
from an experiment with this model is used as one of the example data sets
in Chapter 6, to demonstrate the Bayesian methodology developed in
Chapters 4 and 5.

From the earliest examples, users have recognized that running a
microsimulation model is a statistical experiment and that the model
results are inherently variable. However, the reported uses of various
models typically describe the simulation results in terms of point estimates,
rarely reporting confidence bands or other interval estimates. It appears
that the efforts of the microsimulation researchers have mainly gone into
building the models and estimating the parameters, interesting issues
when wearing the economist's hat. Little effort has been given to issues of
experimental design, interesting issues when wearing the statistician's
hat. Early on, Naylor, Burdick and Sasser (1967) commented that
economists have virtually ignored experimental design considerations of
simulation modeling, perhaps due to having had only limited opportunities
to perform experiments with economic systems before the advent of
simulation modeling. Over the years, things apparently have not

improved, prompting Kenneth Arrow to comment on the lack of



commonplace statistical inference practices at a 1978 Washington, D. C.,
conference for model builders, policy makers, and the academic
community:

Unfortunately, as far as I can see, in all uses of models for
policy purposes (including those at this conference) there is no
confidence or error band. (Arrow, 1980, p. 260)

In a report of the National Research Council (1991), the Panel to Evaluate
Microsimulation Models for Social Welfare Programs strongly
recommended that information about the levels and sources of uncertainty
in policy analysis work be routinely included in the reports provided to
model users.

The variation in microsimulation model output may be classified as
arising from three sources: (1) Monte Carlo variation, (2) decision unit
sample variation, and (3) modeling variation. Orcutt, Greenberger, Korbel
and Rivlin (1961) discussed similar sources of variation, without using
these particular labels.

(1) Monte Carlo variation refers to the variation arising from the use
of random numbers in the model. Monte Carlo variation occurs in a single
replication of a model since random numbers are used to decide whether
events will or will not occur, such as birth, death, marriage, divorce, or
entry into the labor force; random numbers may also be used to determine
the stochastic deviation from the expected value of the level of a decision
unit's characteristic, such as wage rate or number of hours worked. Monte
Carlo variation also arises from performing replications of a model since
the output in each replication depends on the particular set of realized

values of the random numbers.



(2) Decision unit sample variation refers to the variation arising from
the use of a subset of the population of interest as decision units in the
microsimulation model. In models with individuals or households as the
decision units, it is common to have a population with size in the millions
represented by a sample with size in the thousands. The use of a sample
rather than the population reduces the time needed to run each replication
of the model and reduces the data collection requirements. Values are
needed for all descriptive characteristic of each decision unit. This
information usually must be accumulated from a number of sources.

(3) Modeling variation is intended to encompass all other possible
sources of variation including, but not limited to, variation due to operating
characteristics estimation, imputation of values for decision unit
characteristics, and model specification error.

Even if modeling variation can be eliminated, by assuming that a
perfect model with known parameters is specified, the first two sources of
variation would remain. And further, even if sampling variation is
eliminated by using the entire population of interest in the model, Monte
Carlo variation would still remain. Monte Carlo variation is the heart of
simulation modeling experiments; the nature of stochastic simulation
models is to exploit and explore the empirical distributions of output
variables generated by Monte Carlo variation. Unfortunately, it is the least
discussed source of variation in the economics literature. Arrow (1980, p.
260) emphasized the need to deal with Monte Carlo variation:

What is needed is replication, repeated observations within a
time series or a cross-section context ... . So it has to be
understood that even direct observation should be tested by
repeated observations, at several points in time or for several
individuals. (p. 260)



When the different sources of variation are directly addressed in the
economics literature, there seems to be confusion as to how to deal
appropriately with them. For example, Orcutt, et al. (1961) suggested using
replications, which contribute to Monte Carlo variation, to address the
issue of decision unit sample variation:

(It is still necessary ... to approximate the real system of

millions of units with a reduced system containing thousands

of units ... . One solution would be to do quite &8 number of runs

with the same initial population and the same operating

characteristics and get a distribution of final results, from

which could be estimated the expected numbers of units of

given characteristics and the variances of these numbers. (pp.
32-33)

As will be explained in this work, a well designed statistical experiment
allows the model user to identify, and thereby properly evaluate, the
different sources of variation.

A reason for using microsimulation models of large socioeconomic
systems is the ability to perform various types of experiments on the
computerized model that would be impractical or impossible to perform on
the actual systems. These experiments include (1) projections of the state of
the economy into the future, (2) investigation of the effects of alternative
economic policies on the state of the economy, (3) sensitivity analysis, with
respect to the model specification or operating characteristics, and (4)
generation of decision unit histories for the investigation of the impact of
policy decisions on the behavior of individual units; see Orcutt, et al. (1976).
The purpose for using a model influences the selection of the response
variable, the design of the experiment, and the nature of the statistical

inference procedure employed.



A simulation metamodel is a mathematical model, usually less
complicated than the simulation model itself, which is used to analyze the
simulation output. The metamodel is selected to reflect the nature of the
output data and the objectives of the experiment. The two-way random
effects model is often an appropriate metamodel for the output from a
microsimulation model.

The output from a microsimulation model experiment is a matrix of
observed values for the dependent variable. Each column vector in the
matrix corresponds to the outcomes from a single replication, with one
element for each decision unit in the sample. Each row vector corresponds
to the outcomes from a single decision unit, with one element for each
replication. This matrix structure of data values is matched by the
structure of the two-way random effects model.

The two-way random effects model determines the value of the
dependent variable as a linear function of a constant, two random effects,

and a random error term. The model is

where Yj; is the measurement on the characteristic of interest for the i*"

decision unit in the jth replication, and v is the overall mean. The following

distribution assumptions are made for the random variables on the right

side:

the row effect, R, ~ Normal(o. 0121}



the column effect, Cj ~ Normal(O, og) and,

the error term, Eij ~ Normal(O. 012;)

It is further assumed that the row effects, column effects and error terms
are statistically independent over all {i, j}. The structure of this model
permits the identification of decision unit sample variation with the row
effects, Monte Carlo variation with the column effects, and modeling
variation with the error term. Thus, the use of the two-way random effects
model permits the different sources of variation to be identified, separated,

and investigated.

13 Inf A] he M f a New Replicati

The objectives of a simulation experiment determine which system
performance measure is appropriate in any particular application. A
parameter, or a function of the parameters, of the metamodel is selected as
the appropriate system performance measure. The sample observations
from the replications of the model are used to make an inference about the
gsystem performance measure.

In this work, it is assumed that the model user is interested in the
mean of a randomly occurring, as yet unobserved, replication of the model.
Define the variable X;j as the mean of the jth replication, where the

expectation is taken over the row/decision unit dimension:

j = Ei[Yii]
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= E{\u+Ri+Cj+Eﬁ]

=y+C;. (1.2)

Incorporating this definition into the model given in Equation (1.1), the two-

way random effects model m~y be expressed:

where the random column effect X; ~ Normal(w, 0(23 The experiment is

performed over I decision units and J replications, resulting in an IxJ
matrix of observed values. Without loss of generality, any unobserved,
randomly selected replication may be referred to as the (J+1)th replication.
So, it is assumed that the model user is interested in the mean of the (J+1)th
replication, Xj,;. Using the Nakamura model as an example, with the
annual earnings of a wife as the dependent variable, it is assumed that the
model user is interested in the mean of annual earnings of all wives for the
(J+1)th replication.

The reason for selecting the mean of the (J+1)th replication, XJ,1,
rather then the overall mean, y, as the system performance measure is
based upon the nature of the economic systems upon which
microsimulation models are based. Microsimulation models are models of
economic systems in the real world. Conceptually an economic system can
be considered a stochastic process with, at any point in time, a random
distribution of possible states that may occur in the future. An economic
system has only a single realized time path, not multiple realized

observations. The overall mean, vy, describes the average annual earnings
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of all wives over all possible replications of the model; conceptually, there
are an infinite number of possible replications. The mean of the (J+1)th
replication, Xj,1, describes the average annual eanﬁngs of all wives for a
single replication, just as an economic system has but a single realization.
Interval estimates for the mean of the (J+1)th replication, Xy, 1, are
developed in this work. The frequentist theory confidence intervals are
based on the sampling distribution of the overall mean; this approach is
developed in Section 3.3. The Bayesian theory credible sets are based on the
pbsterior distribution of Xj.1, this approach is outlined in Section 3.4 and
developed in detail in Chapter 4. The posterior distribution can be used as
the basis for any type of Bayesian inference (Berger, 1985). Specific
intervals can be constructed from the posterior distribution ; in particular,
highest posterior density (HPD) credible sets are constructed, analogous to

the frequentist's confidence intervals.

14 Bavesi | F <t Analvsi

Difficulties exist with the implementation of either the frequentist or
Bayesian inference approach. Some problems which arise when using the
frequentist approach are described first, and then some problems
encountered using the Bayesian approach are described.

A major problem with the frequentist analysis of the two-way
random effects model is the possibility of obtaining negative estimates for
the row effect variance, column effect variance, or both, when using the
standard method-of-moments estimators. These estimators are found by
equating the expected mean squares values from the analysis of variance
table with the corresponding variance functions. The estimators are

uniformly minimum variance and unbiased for a balanced design when



using normal distributions (Searle, 1971). When negative estimates occur,
"several courses of action exist, few of them satisfactory,” (Searle, 1971, p.
407). Among the courses of action specifically mentioned, Searle included
using alternative estimation methods such as maximum likelihood
analysis or Bayesian analysis. Maximum likelihood estimators for the one-
way random effects model have been found, but these estimators are biased.
Due to the complexity of the likelihood function for the two-way random
effects model, Equation (1.1), there are no closed form solutions for the
maximum likelihood estimators (Szatrowski and Miller, 1980, pp.814-815).

In Bayesian analysis, each parameter is restricted to its probability
space; for a variance, this is the non-negative portion of the number line.
Estimates of a variance are based upon its posterior distribution which is
only defined for non-negative values. Bayesian analysis for the two-way
random effects model has been addressed generally in Box and Tiao (1973)
and Broemeling (1985). In those works, interest is focused primarily on the
variance parameters, with the mean being considered a nuisance
parameter; analytic results for the marginal posterior distributions of the
variances are not available due to the intractability of the integrals
encountered.

Among the criticisms of Bayesian analysis, two are specifically
mentioned here: (1) solicitation of prior distributions; and (2) intractability
of integrals. Bayesian analysis permits the incorporation of the model
user's experience, knowledge and common sense into the analysis by the
use of prior distributions on model parameters. The determination of the
posterior distribution by combining the prior distribution and likelihood
function through Bayes' theorem is generally not feasible, except when

using conjugate priors. Even when using conjugate priors, the solicitation
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from the model user of the parameter values for these prior distributions
may be a problem. This work assumes that the model user can specify the
parameter values for the conjugate prior distributions used in the analysis.

The problem of intractable integrals may arise in Bayesian analysis,
especially when using multiple parameter models such as the two-way
random effects model. The problem occurs because of the need to integrate
over nuisance parameters in a joint posterior distribution to obtain the
marginal posterior distribution of the parameter of interest. Methods of
dealing with the intractable integrations include numerical integration,
Monte Carlo integration, analytic approximations, and Gibbs sampling. A
particular type of analytic approximation, proposed by Tierney and Kadane
(1986), is based on LaPlace's method for integral approximation, using a
Taylor series expansion about the mode of the distribution of the nuisance
parameters.

In this work, methods for the approximation of intractable integrals
encountered in the derivation of the posterior distribution of the mean
response of the (J+1)th replication from a two-way random effects model are
developed; these methods are referred to as analytic-numeric
approximations. The analytic portion of this method derives a function of
the integrand which, when evaluated at the mode, approximates the value
of the integral; however, the mode cannot be determined analytically. The
numeric portion of this method locates the mode of the integrand, and
evaluates the approximation function, numerically. While the two-way
random effects model does not satisfy the regularity conditions for
guaranteeing the validity of LaPlace's method in all applications (Kass,
Tierney and Kadane, 1990), the analytic-numeric approximations do work

in the examples presented later of the Nakamura model.
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15 Overview

The objective of this work is the demonstration of Bayesian
procedures for the analysis of output from microsimulation models. In
order to accomplish this, a Bayesian estimation methodology is developed
for the mean of the dependent variable for a randomly selected column of
the two-way random effects model. Using the mean response of the (J+1)th
replication of the microsimulation model as the system performance
measure focuses the attention of the model user on an appropriate measure
matching the behavior of the real system being studied.

Using conjugate prior distributions for the model parameters,
analytic Bayesian solutions are used as far as possible. The model
likelihood function is combined with the joint prior distribution by Bayes'

theorem to obtain the joint posterior distribution of the mean of the (J+1)th
column and the four model parameters, {\y, 0,2;, og, OEZ}, Integration over the

mean parameter is performed analytically. The integrations over the three
variance parameters are not tractable. An analytic-numeric
approximation for these integrations is developed fellowing the LaPlace
method for integral approximation, where the modes and solution of the
approximation function are performed numerically.

A microsimulation model of the labor force participation of wives,
with annual earnings as the dependent variable, is used as an example
throughout. For this example model, the mean annual earnings of the
(J+1)th replication is the system performance measure. Output from the
example model is used to demonstrate the analytic-numeric approximation
method for finding selected Bayesian HPD credible sets for the system

performance measure, using non-informative and informative prior



15

distributions for the model parameters. Corresponding frequentist
confidence intervals are presented for comparison. The comparative
analyses are performed for the different situations which can arise in
practice, when estimates for the row variance or column variance or both
have negative values. The comparisons demonstrate the different results
that can occur when using the same experimental results with the
different philosophical approaches to inference. It is shown that analogous
interval estimates have different midpoints and different widths, reflecting
the different estimates of means and standard deviations resulting from the
use of Bayesian or sampling theory methods.

The use of microsimulation models can be enhanced by employing
the two-way random effects model as a simulation metamodel, and the
mean of the (J+1)th replication as the system performance measure about
which inference is made. Employing Bayesian analysis permits the model
user a systematic way to incorporate the user's prior knowledge about the
behavior of the system being investigated. The analytic-numeric
approximation method developed and demonstrated in this work provides a
computer based method for accomplishing the Bayesian analysis of

simulation model output which may be useful in many situations.



CHAPTER 2
THE SIMULATION MODEL AND EXPERIMENT

This Chapter presents the simulation model and experiment used as
the primary example throughout this work. The microsimulation model is
described in Section 2.1. The decision unit sample is discussed in Section
2.2. The computer program which implements this model is discussed in
Section 2.3. And, the results of the simulation experiment are discussed in

Section 2.4.

21 The Nal Microsimulation Mode]

The microsimulation model used to demonstrate the application of a
two-way random effects Bayesian analysis is from Nakamura and
Nakamura (1985a). That article compared three models of the labor force
participation of married women, each model incorporating different
amounts of past information. Of the three, the Difference model is used as
the example microsimulation model in this work, and referred to hereafter
as the Nakamura model.

The Nakamura model is a model of the labor force participation of
married women with a time period of one calendar year. The dependent
variable for each wife is her annual earnings. Annual earnings are
determined in a three step stochastic process: the first step, called the
Probit Index step, determines whether or not the wife is working during the

year; the second step, called the Wage Rate step, determines the hourly
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wage rate received during the year; and the third step, called the Hours
Worked step, determines the number of hours worked during the year. The
explanatory variables in each of the three steps include personal
characteristics, family characteristics, and macroeconomic
characteristics. Table 2.1 contains a complete list of the model explanatory
variables and their classification. The table designation as an individual or
a family characteristic is determined by the type of record where the
information is located in the Panel Study of Income Dynamics (PSID). This
data set is collected and published by the Institute of Social Research of the
University of Michigan (see Institute of Social Research, 1985); it was used
as the data source for estimation of the coefficients by Nakamura and
Nakamura, and is used as the data source for the decision unit sample for
this work's simulation experiment. The dummy variable for race (#10) is
classified as a family characteristic because in the PSID race is recorded on
the family record, not on the individual record. Not all of the 20 variables in
Table 2.1 are used as explanatory variables in each of the three steps of the
model; Table 2.2 shows which explanatory variables are used in each step of
the model.

The constant terms and the coefficients for the explanatory variables
in the three model steps are taken from Tables A.1 through A.3 of
Nakamura and Nakamura (1985a). These values were estimated using a
data set covering the period 1969 through 1978, selected from the PSID; due
to the structure of the PSID, the 1968 through 1979 waves were needed to
capture the data for the calendar years 1969 through 1978. A total of 546
women who were from 21 to 64 years old, married, and for whom all data
are available throughout the entire period, were found by Nakamura and

Nakamura. From that group, 364 wives were selected at random and used
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Table 2.1 - Model Variable Definition and Classification

i Definition (in year ¢ unless otherwise noted) Type
1 Logof hours of workint - 1 I
2 Logofhourly wagerateint - 1 (19679%) I
3 Proportion of years worked since 18 years of age |
4 Dummy =1 if never worked since 18 years of age; I
= 0 otherwise
5 Dummy = 1 if wife has a baby in ¢ ; = 0 otherwise F
6 Dummy = 1 if youngest child is less than 6 but not a new F
baby; = 0 otherwise
7 Number of children younger than 18 living at home F
8 Age I
9 Education I
10 Dummy = 1 if wife is black; = 0 otherwise F
11  Earned income of husband (1000's of 1967$) F
12 Difference between earned income of husbandin¢ and ¢ - 1 F
(1000's of 1967%)
13  Difference between earned income of husband in¢ and ¢ - 1 F
if difference negative (1000's of 19678$); = 0 otherwise
14 State of residence average hourly wage in manufacturing M
(1967$)
15 Difference between state of residence average hourly wage M
in manufacturingint and¢- 1 (1967$)
16  State of residence unemployment rate M
17  Difference between state of residence unemployment ratein M

t andt-1
18 Selection bias term ()
19 Predicted log of hourly wage (1967$)

2 Predicted difference between log of hourly wageint¢ andt-1 1
(1967%)

Note: For Type: I = individual; F = family; and M = macroeconomic.
Source: Nakamura and Nakamura (1985a, Tables Al - A3).

for estimation of the coefficients; the remainder of the data set was used to
conduct the out-of-sample simulation experiments reported in that article.

The data set was divided into four strata, based on the cross-classification of



_Table 2.2 - Explanatory Variable Usage

Model Step Model Step
Var. Probit Wage Hours Var. Probit Wage Hours
# Index Rate Worked # Index Rate Worked
1 X 11 X X
2 X 12 X X
3 X X 13 X X
4 X X 14 X X
5 X X 15 X X
6 X X 16 X X
7 X X 17 X X
8 X X X 18 X X
9 X X 19 X
10 X X 2 X

the wives on two age categories in the current year (under 47 years, or at
least 47 years) and two work experience categories in the preceding year
(idle, or some work). Tables 2.3 through 2.5 contain the estimated
coefficients for the three model steps, respectively.

In the Probit Index step, the dependent variable is the index for the
wife's probability of working at any time during the year, called the probit
index, ¢. The probability that the wife works during the year is the

percentile of the standard normal distribution corresponding to ¢.

¢
probability of working = f

1
%+ 2n

The probit index is modelled as a linear function of a constant term and the

exp( - —z;- )dz . (2.1)

explanatory variables indicated in Table 2.2. In the simulation experiment,
a wife's probability of working in a year is estimated by this function, and a

Monte Carlo determination of the wife's participation in the labor force is
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Table 2.3
Estimated Coefficients for Probit Index Steg
Worked in ¢ - 1 Idleint - 1
i <47 247 <47 247
constant 0345 -1.984 0.5630 1.997
1 0.289 0.569 0 0
2 0.406 0.258 0 0
3 -0.015 0.442 0.554 1.303
4 0 0 -1401  -0.795
5 -0.272 0 -1.332 0
6 0.335 0 -0.290 0
7 0.027 0.153 0.036 0.010
8 0.017 0.002 -0.035  -0.047
9 -0.008 -0.001 0.021 0.046
10 -0.217 -0.286 0.357 -0.326
11 0.006 0.020 -0.022 0.220
12 -0.016 0 -0.018 0
13 0 -0.005 0 0.097
14 -0.035  -0.116 0.126 -0.360
15 1.317 2.754 1.167 3.748
16 -0.230 -0.108 -0.050 -0.054
17 0.118 0.055 -0.016 0.053

Source: Nakamura and Nakamura (1985a, Table Al).

made by comparing her deterministic probability of working to a random
selection from the uniform(0,1) distribution. If the realized value of this
random variable exceeds the wife's probability of working, she remains idle
for the entire year and has zero earnings; if not, she enters the labor force
for that year and proceeds through the remaining two steps to determine
her annual earnings.

To illustrate the simulation model, a wife is selected from the
decision unit sample, discussed in Section 2.2, and her performance

through the model is calculated at each step. The selected wife is a 41 year
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Table 2.4
Lstimated Cocfficients for Wage Rate Step
Workedin ¢ - I Idleint - 1
i <47 >47 <47 247
constant 0.111 0.165 -0.854 3.262
3 0016  -0.028 0.408 2.287
4 0 0 -0.919 -2.008
8 0.000 -0.001 -0.10 -0.087
9 0001 -0.002 0.048 0.162
10 -0.011 0.006 0328 -2.151
14 0050 -0.054 0.116 -1.288
15 0311 0.533 0 0
16 -0.058 0.018 0.007 0.043
17 0.002 0.003 0 0
18 12562  -0.494 0.807 2.508
Source: Nakamura and Nakamura (1985a, Table A2).
Table 2.5
Estimated Coefficients for Hours Worked Steg
Worked in ¢ - 1 Idleint - 1
1 <47 247 <47 247
constant -0.193  -0.081 6714 7290
5 -0.215 0 0.553 0
6 0.058 0 -0.078 0
7 0.006 0.042 0.050 0.047
8 0003 -0.003 0.002  -0.040
11 0.002 0.014 -0.0562 -0.012
12 -0.002 0 0 0
13 0 0.025 0 0
18 1.115 1.578 -0.163 0.337
19 0 0 0.033 -0.769
y. | 1281 -1.338 0 0

Note: Variable sequ -.nce is different than in source.
Source: Nakamura and Nakamura (1985a, Table A3).

old, college graduate, Spanish-American, living in Florida. She has two

children, ages 16 and 17 years in 1977. Since the age of 18 years, she has
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worked 4 years, including 1977 when she worked 1,575 hours and earned
$7,200. In 1977, her husband earned $99,999 and in 1978 he earned $72,000.
The wife's descriptive characteristics are presented numerically in Table
2.6 as PSID variable values in the second column and the simulation
program variable values in the fourth column. Using the simulation
program variables indicated in Table 2.2 for the Probit Index step, the

program variable values given in column 4 of Table 2.6, and the coefficients

pable 26 - ple Wife Variable Values
Program
PSID # Value Var. # Value
5203 9 1 7.3620
5703 9 2 0.9237
5743 1575 3 0.1667
5788 7200 4 0
6123 4 5 0
5353 6 0
5853 1 7 1
5854 17 8 41
5852 41 9 16
6116 16 10 0
6209 3 11 36.8475
6174 99999 12 -18.2484
6767 72000 13 -18.2484
14 3.5872
15 0.0386
16 4.0
17 0.0
18 0.0050
19 0
2 0.0953

YOUNG TRUE.
WORKED .TRUE.




given in the second column of Table 2.3 for the worked/young stratum, this
wife's probit index equals 2.9595. Her probability of working in simulated
1978 is 0.9985; this probability would be compared to a random selection
from a uniform(0,1) distribution to determine if she would be simulated as
working in 1978. It is assumed for this example that she would be
simulated to work.

When a wife works during a year, a function of her probit index for
the year is used as an explanatory variable for the Wage Rate and Hours
Worked steps, variable #18 in Tables 2.1 and 2.2. This function, referred to

as the selection bias term, A, is calculated by

) = L9 2.2)

N¢) '’

where f denotes the standard normal density function and F denotes the
standard normal cumulative distribution function. Heckman (1979)
proposed the selection bias term as a simple consistent estimation method
for the explanatory variables which when omitted from a regression
analysis, due to using censored samples to estimate behavioral models, give
rise to specification error. The PSID information on wage rates and hours
worked is a censored sample since it does not contain information on the
asking wages of those who do not work. Only those whose offered wage,
evaluated at zero hours of work, exceeds their asking wage enter the labor
force. In the simulation model, the Wage Rate and Hours Worked steps are
performed for those wives who have been simulated as entering the labor
force in the Probit Index step; thus, their simulated wage rate must exceed

their asking wage rate.



For the example wife, with a probit index of 2.9595, her selection bias

term is calculated

_ f29595) _ 0.0050
A = “|29505) = 0.0985 - 0-0050,

which is used for the value for X(18) in column 4 of Table 2.6 for the Wage
Rate and Hours Worked steps.

In the Wage Rate step, the wife's dependent variable is the log of her
wage rate if she was idle during the preceding year, or it is the difference in
the logs of the wage rates between the current and preceding years if she |
had worked during the preceding year. The expected value of this
dependent variable is calculated by a linear function of a constant term and
the explanatory variables indicated in Table 2.2. The actual value of the
dependent variable is stochastically determined by adding a zero-mean
normal random variable disturbance term to the expected value. The
standard deviation for these distributions, and for those in the Hours
Worked step, are not given in the Nakamura paper; however, estimation of
these values are described in Section 2.3.

For the example wife, using the simulation program variables
indicated in Table 2.2 for the Wage Rate step, the program variable values
given in column 4 of Table 2.6, and the coefficients given in the second
column of Table 2.4 for the worked /young stratum, the expected value of the
difference in the log of this wife's 1978 wage rate from her 1977 wage rate
equals 0.0953, which is used for variable X(20) in column 4 of Table 2.6 in
the Hours Worked step. For this example, the random error term is

omitted. Thus the wife's wage rate for simulated 1978 is

WAGE7s = exp[0.9237 +0.0953] = 2.7704,



where the log of her wage rate in 1977 is from X(2) of Table 2.6

A similar procedure is used in the Hours Worked step. The wife's
dependent variable is the log of her hours worked if she was idle during the
preceding year, or it is the difference in the logs of the hours worked
between the current and preceding years if she had worked during the
preceding year. The expected value of this dependent variable is calculated
by a linear function of a constant and the explanatory variables indicated in
Table 2.2. Again, the actual value is stochastically determined by adding a
zero-mean normal random variable disturbance term to the expected value.

For the example wife, using the simulation program variables
indicated in Table 2.2 for the Hours Worked step, the program variable
values given in column 4 of Table 2.6, and the coefficients given in the
second column of Table 2.5 for the worked/young stratum, the expected
value of the difference in the log of this wife's 1978 hours worked from her
1977 hours worked equals 0.1739. Again, the random error term is omitted.

Thus the wife's hqurs worked for simulated 1978 is
HOURS7s = exp[7.3620 +0.1739] = 1874.1303,

where the log of hours worked in 1977 is from X(1) of Table 2.6
The wife's annual earnings are calculated by multiplying the wage

rate by the number of hours worked during the year;

EARNINGS7;s = WAGE75 x HOURS4

2.7704 x 1874.1303 = 5192.0906 ,

in 1967 dollars.

The two-way random effects model is



Yii =V+R4+Cj+E'u, (2.3)

where Yj; is the measurement on the characteristic of interest for the it
decision unit in the jth replication. To put the Nakamura model into the
context of this metamodel, the following structure is used. The wives are
the decision units, which constitute the effects in the row, i, dimension.
Independent replications of the model constitute the effects in the column,
j, dimension. The dependent variable, Yj;, is the annual earnings for the ith
wife in the jth replication. Each replication of the model produces a column
vector of observed values for the annual earnings of the I wives in the
decision unit sample. When the model is replicated J times, an IxJ matrix

of observed values of Y;; are obtained. Each replication of the model may be
thought of as running the economy over the same time period starting at
the same initial state, but with different random shocks applied to it. The
overall average annual earnings for all wives over all possible replications
is represented by the parameter y. The row effect for each wife, R;, is
attributable to her deviation from the overall average annual earnings; this
effect persists for her over all replications of the economy. The column
effect for each replication, C;, is attributable to the replication's deviation
from the overall average annual earnings; this effect has the same affect on
all wives in each replication. And the error terms, Ej;, are the deviations
from the overall average earnings affecting each individual wife on each
individual replication of the model.

The two-way random effects model can be a useful supplement to the
microsimulation model for policy analysis because it separates the

variation contributions in annual earnings. In this sense, the row effects,

R;, can be considered to represent an individual wife's earnings level with



respect to others in the labor market; these effects may be of interest to a
model user interested in exploring the impact of programs designed to
influence an individual's earnings' capability. The standard deviation of
the row effects, og, is a measure of the variability of annual earnings
among all of the wives. The column effects, C;, can be considered as the
relative state of the economy for each replication, which affects all
participants equally; these effects may be of interest to a model user
interested in exploring the impact of macroeconomic programs designed to
influence the overall state of the economy. The standard deviation of the
column effects, o¢, is a measure of the variability of annual earnings
among all of the replications; this is a measure of the variability associated
with the behavior of the economy as a stochastic process. The standard
deviation of the error term, o, is a measure of the variability of annual
earnings across the entire model due to errors arising from operating
characteristics estimation, imputation of missing data, and model

specification errors.
2 181 ni mpl

Since this work is intended to demonstrate output analysis, the
experiment was designed to simulate the wives for a single year, 1978,
based on their characteristics as of 1977. Nakamura and Nakamura
(1985a) did not provide enough information to reconstruct its set of 546
wives. The PSID tapes are periodically updated and corrected, and without
having the same tape records available it was not possible to duplicate that
set of 546 wives from currently available PSID tapes. For this experiment, a

decision unit sample was constructed using the current versions of the

PSID tapes. The coefficient estimates for the three simulation model steps
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as given in Nakamura and Nakamura (1985a) are used in the simulation
model computer program, as described in Section 2.3.

In order to obtain the information necessary to simulate the year 1978
based on the wives' characteristics as of 1977, the records from the 1977
through 1979 interviewing years of the PSID were used. The information
was obtained from the 1968-1987 Family Level tape, Wave XX. In June,
1991, this wave was recorded on public tapes 157-LISP-167 and 157-CUSP-
167 at the University of Michigan Computing Center. On the tapes, the
PSID is organized in OSIRIS data files (see Institute for Social Research,
1981). All eligible families with no missing values for the needed variables
are used. Eligible families are those from the SRC subsample portion of the
PSID, for which the wife was between the ages of 29 and 63 years in 1978,
and the head and spouse remained married to each other for 1977 and 1978.

Table 2.7 lists the PSID variables used for this model; the numbers
refer to the PSID variable identification numbers. The variables in Group
A are used to screen for eligible families from among all family records in
the tape file; these variables are not saved after the screening is completed.
The variables in Group B are used in the simulation computer program;
some of these are used directly as explanatory variable values while others
are used as arguments in transformation functions to determine other
explanatory variable values. The variables in Group C are used to estimate
the standard deviations for the stochastic disturbance terms for the Wage
Rate and Hours Worked steps, as described in Section 2.3. In fact, these
last two PSID variables are the actual 1978 PSID values for the hours
worked and wage rate which the model is written to simulate.

Appendix A, Section 1, contains a list of OSIRIS commands used to
read the desired information from the tapes, and a list of MIDAS (Fox and



Description PSID #
Group A
1968 Interview Number, 1977 5336
Marital Status of Head, Present Status, 1977 5650
Marital Status of Head, Year-to-Year Change, 1978 6219
' Marital Status of Head, Year-to-Year Change, 1979 6812
Group B
Location Measures, State and County, current, state, 1977 5203
Location Measures, State and County, current, state, 1978 5703
Hours, Work, annual, wife, 1978 (lagged one year) 5743
Income, Labor, wife, total, 1978 (lagged one year) 5788

Work History, Years Worked Since 18 (Number of), wife, 1978 6123
Children, Number of, in family unit, total, from birth-17, 1977 5353
Children, Number of, in family unit, total, from birth-17, 1978 5853

Children, Age, youngest in family unit, 1978 5854
Age, Wife, 1978 5852
Education, Head and Wife, grades completed, wife, 1978 6116
Race, 1978 6209
Income, Labor, head, total, 1978 (lagged one year) 6174
Income, Labor, head, total, 1979 (lagged one year) 6767
Group C
Hours, Work, annual, wife, 1979 (lagged one year) 6348
Income, Labor, wife, total, 1979 (lagged one year) 6398

Source: Institute for Social Research (1985).
Guire, 1976) commands used to eliminate records with missing data and
write the valid observations to a data file. All computer work was
performed on the University of Michigan's mainframe system with an IBM
ES/9021 Model 270 computer. This sequence of commands produces a
MIDAS INTERNAL file, which contains 1124 cases for 15 variables (the last
15 variables listed in Table 2.7). Appendix A, Section 2, contains a list of
commands used to read the PSID data from the MIDAS INTERNAL file



and write the 13 variables needed for the decision unit sample into a
FORTRAN formatted file used as input to the computer program written to

perform the simulation experiment.

23 The Simulation Model C ter P

A computer program implementing the Nakamura model is written
in the FORTRAN programming language, incorporating selected
subroutines from the International Mathematical and Statistical Libraries
(IMSL, Inc., 1987a,b); a complete listing of the program is given in
Appendix B.

In addition to the coefficients given in Tables 2.3 through 2.5, which
are set in the computer program in subroutine MODVAL, the Nakamura
model uses the average hourly wage in manufacturing and the
unemployment rate in the state of residence for each wife; a price deflator is
also needed since all dollar values are expressed as 1967 dollars. These
macroeconomic characteristic values were gathered from various federal
government reports, and set in the computer program in subroutine
MACROV. The information on state unemployment rates and the
Consumer Price Index is taken from the Handbook of Labor Statistics,
Tables 45 and 134 respectively (U. S. Department of Labor, 1980); the state
average wage rates in manufacturing are taken from the Handbook of
Labor Statistics, Table 90 (U. S. Department of Labor, 1989). The
macroeconomic characteristics for the states are listed in Table 2.8; in the
PSID the state index numbers are assigned #1 to #49 for the 48 contiguous
states and the District of Columbia arranged alphabetically, Alaska is
assigned #50, and Hawaii is assigned #51. The Consumer Price Index for

1977 and for 1978 are listed in Table 2.9.Kansas is the only state for which
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Tabl 2.8 Macroeconomic Variab

Unemployment Manufacturing

Rate Avg. Wage Rate
i State 1977 1978 1977 1978
1 Alabama 74 6.3 4.89 5.40
2 Arizona 8.2 6.1 5.55 6.03
3 Arkansas 6.6 6.3 430 4.72
4 California 8.2 71 6.00 6.43
5 Connecticut 7.0 5.2 5.56 5.96
6 Colorado 6.2 5.5 5.80 6.21
7 Delaware 84 7.6 5.94 6.58
8 Dist. of Columbia 9.7 8.5 5.50 6.72
9 Florida 8.2 6.6 4.63 5.07
10 Georgia 6.9 5.7 446 4.88
11 Idaho 59 5.7 5.82 6.53
12 Illinois 6.2 6.1 6.28 6.76
13 Indiana 5.7 5.7 6.60 7.17
14 Iowa 40 4.0 6.43 7.00

15 Kansas 4.1 3.1 5.11* 564 *
16 Kentucky 4.7 52 5.69 6.26
17  Louisiana 7.0 7.0 5.75 6.42
18 Maine 8.4 6.1 452 491
19 Maryland 6.1 5.6 6.05 6.46
2) Massachusetts 8.1 6.1 5.13 5.54
21 Michigan 8.2 6.9 7.54 8.13
2 Minnesota 5.1 3.8 597 6.44
23 Mississippi 74 7.1 415 4.56
24 Missouri 59 5.0 5.75 6.21
2% Montana 6.4 6.0 6.53 7.81
2% Nebraska 3.7 29 5.39 5.83
271 Nevada 7.0 44 6.10 6.54
28 New Hampshire 59 3.8 4.56 4.93
29 New Jersey 94 7.2 5.80 6.20
3 New Mexico 7.8 5.8 443 4.79
31 New York 9.1 7.7 5.67 6.08




__Table 2.8 - State Macroeconomic Variables, contd.

Unemployment Manufacturing
Rate Avg. Wage Rate

i State 1977 1978 1977 1978
32 North Carolina 59 4.3 4.10 447
33 North Dakota 4.8 4.6 5.19 5.55
#A Ohio 6.5 54 6.74 7.29
3 Oklahoma 5.0 3.9 5.31 5.81
36 Oregon 7.4 6.0 6.67 7.23
37 Pennsylvania 7.7 6.9 5.85 6.37
38 Rhode Island 8.6 6.6 4.39 4.71
39 South Carolina 7.2 5.7 4.28 4.66
40 South Dakota 3.3 3.1 484 5.19
41 Tennessee 6.3 5.8 4.68 5.13
42 Texas 5.3 4.8 542 5.88
43 Utah 5.3 3.8 5.18 5.68
4 Vermont 7.0 5.7 4.70 5.10
45 Virginia 5.3 5.4 4.69 5.11
46 Washington 8.8 6.8 6.83 7.56
47 West Virginia 7.1 6.3 6.06 6.68
48 Wisconsin 49 5.1 6.16 6.69
49 Wyoming 3.6 3.3 5.70 6.18
5 Alaska 9.4 11.2 9.12 8.86
51 Hawaii 7.3 7.7 5.51 5.90

* Wage rates for Kansas are imputed.
Sources: U. S. Department of Labor (1980, Table 45; 1989, Table 90).

Table 2.9
Consumer Price Index

Year CPIL

1977 1815

1978 1954
Source: U. S. Department of Labor (1980, Table 134).

average hourly wage rates in manufacturing are not available for 1977 and

1978. The missing information was estimated by fitting a linear trend
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model over the years for which the rates were available, 1979 through 1988,
using the rate in Nebraska as the explanatory variable and the rate in
Kansas as the dependent variable. The imputed rate in Kansas for 1977 is
the point estimate from this model using the Nebraska rate for 1977 as the
explanatory variable; a similar estimate was obtained for 1978. Nebraska
was selected as the source for the explanatory variables since it had the
highest coefficient of determination with Kansas (R2 = 0.9873) from among
the other states located in Region VII, defined in the Handbook of Labor
Statistics, Table 97 (U. S. Department of Labor, 1989). Region VII consists
of the states of Iowa, Kansas, Missouri, and Nebraska.

As described in Section 2.1, stochastic disturbance terms are used in
the Wage Rate and Hours Worked steps. These disturbance terms are
assumed to follow a normal distribution with means equal to zero. The
Nakamura article did not report the standard deviations resulting from
fitting the models to their data set when the coefficients were estimated;
however, the article does report R2 values for each of the three model steps
over each of the four strata. These R2 values are used with the standard
deviations of the actual 1978 wage rates and hours worked from the decision
unit sample of wives to estimate the missing standard deviations for the
stochastic disturbance terms; details are presented in Appendix C.

The computer program is outlined in Table 2.10. The program is run
once for each replication of the model. An initial seed value for the pseudo-
random number generators is required as input; at the end of each
replication the ending seed value can be written to a file for use as the input
value for the subsequent replication. All pseudo-random numbers that
may be needed in the run are generated at the outset for efficiency, using

IMSL subroutines, in program step 1. The program loops through a series
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Table 2.10 - Simglation Prog;am Outline
Step Description
1 Calculate 3 vectors of pseudo-random numbers
Start loop, for each wife
Read PSID values
Transform PSID values to explanatory variable values
Determine stratum
Calculate probit index
Calculate probability of working
Monte Carlo determination of working:
if idle, earnings = 0, end loop for wife;
if working, continue
Calculate selection bias term
9 Calculate wage rate
10 Calculate hours worked
11 Calculate annual earnings
End loop on wife
12 Report results

= O W N

of operations for each wife in the decision unit sample. The wife's
individual and family characteristics are read from a file containing PSID
values in program step 2. The expianatory- variable value assignments are
made in program step 3. Some of the explanatory variable values are one-
to-one transformations of the PSID or macroeconomic values; for examples,
age of the wife, or state unemployment rate. However, some program
explanatory variables are transformations of the PSID or macroeconomic
values; for examples, race (a multilevel categorical variable in the PSID)
becomes a single dummy variable, husband's earnings in thousands of
1967 dollars, or the difference between state average wage rates in
manufacturing between the current and preceding years in 1967 dollars.

The wife's stratum is determined in program step 4. The Probit Index step
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of the model comprises program steps 5 through 8. If the wife is selected to
be working during the year, the Wage Rate step, Hours Worked step and
calculetion of annual earnings are performed in program steps 9 through

11. After all wives in the decision unit sample have been processed, the

vector of annual earnings is reported (program step 12).

24 The Simulation Experi

The simulation experiment consists of 1000 replications of the model.
While the number of replications used may be considered large, it is not
intended to resolve the issue of sample size for replications. The
appropriate number of replications for a simulation experiment depends on
many issues including the user's desired confidence level and precision of
results, as well as the analysis method used for the metamodel. Sample
size issues for simulation experiments are appropriate topics for further
research. The seed value used for the pseudo-random number generators
in this experiment is 0578143136.

To illustrate the performance of the simulation model, the output
from the first ten replications of the model is described in some detail. The
output data consists of a 1124x10 matrix of observations on annual
earnings. A relative frequency histogram of annual earnings for the entire
set of 11240 observations is presented in Figure 2.1. The values on the
horizontal axis are the upper bounds on the class intervals. The first class
represents the proportion (3091 of 11240) of wife-replications with zero
earnings. The rightmost class is open ended; there are 755 observations
above $15,000 with the maximum value at $532,827.

Considering the individual replications, descriptive statistics are

presented in Table 2.11. The second and third columns describe annual
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Figure 2.1 - Annual Earnings, All Wives Over All Replications
Table 2.11
Descriptive Statistics of Annual Earnings
All Wives Working Wives

Repl. # Mean St.Dev. # Idle Mean St.Dev.

42809 9677. 314 810 59404 10960.
4384.1 12204. 301 823 59875 13924.
4925.7 133NM. 32 804 6886.2 15407.

#

1 5007.2 21551, 318 806 6982.7 25182.
2 51439 17558. 295 829 69744 20133
3 46173 12761. 321 803 6463.1 14699.
4 5033.0 20984. 317 807 70100 24488.
5 4975.9 20282. 295 829 6746.5 23366.
6 48034 16579. 308 816 66164 19150.
7 4667.2 13451. 302 822 63819 15379.
8
9

10

Mean 47839 15844.1 309.1 8149 65989 18268.8
St.Dev. 289.3  4145.7 10.2 10.2 399.3  4924.8




L1

earnings for all 1124 wives in each replication. The last three columns
describe annual earnings of the wives who had worked in each replication.
The proportion of wives idle in a replication ranges from 26.2% to 28.5%,
with a mean of 27.5%.

The working/idle behavior of the wives across the replications is
depicted in Table 2.12. The second column displays the number of wives
who worked during the number of replications given in the first column;
for examples, 60 of the wives worked in zero replications, and 463 of the
wives worked in all 10 replications. The third and fourth columns separate
the wives based upon their actual work experience in 1977. Of the 667 wives
who had worked in 1977, 566 have been replicated as working in at least 9

replications in 1978; the replicated work experiences in 1978 for the wives

Table 2.12
Reglication of Working
1978 Number of Wives

# Repl's. 1977 Experience
Worked All Idle Work

0 60 60 0

1 45 43 2

2 58 56 2

3 49 49 0

4 61 58 3

5 58 53 5

6 45 32 13
7 48 19 2 -

8 62 15 47

9 175 25 150

10 463 47 416

Total 1124 457 667
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who were idle in 1977 are well spread across all numbers of replications
from 0 to 10. Figure 2.2 graphically displays the replicated work
experiences of all wives, comparable to the second column in the table; the
divisions of the bars graphically display the replicated work experiences of
the wives, according to their actual work experience in 1977 comparable to

the third and fourth columns of the table.

45% 1
40% 1
35% 1
30% 1
25% 1
20% 1
15% 1
10% ¢

5%"’/
0% %‘

o 1 2 3 4 5 6 17 8 9 10
Worked in 1977 Idle in 1977

Figure 2.2 - Number of Replications Worked, Out of 10

Relative frequency histograms of the means and standard deviations
of annual earnings across replications for each of the 1124 wives are
presented in Figures 2.3 and 2.4, respectively. In each of these figures, the
values on the horizontal axis are the upper bounds on the class intervals,
with the rightmost class being open ended. The 60 wives who were
replicated as working in zero replications belong in the zero class for each
of these figures. There are 41 wives with mean annual earnings above

$20,000 with the maximum at $88,679. There are 83 wives with a standard
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of annual earnings above $20,000 with the maximum at

approximately $171,460.

35%
30% A1
25% 1
20% 1
15% 1
10% 1

5% 1

T n=1124

0% +%

0123456 7 8 91011121314151617181920 >
20

1000's of 1967%

Figure 2.3 - Means of Annual Earnings, Over Replications

25% 1

20% 1

15% -

10%

0% 1

5% 1k

30% T n= 1124

0 1234567 8 91011121314151617181920 >
20

1000's of 1967$%

Figure 2.4 - Standard Deviations of Annual Earnings, Over Replications




CHAPTER 3
THE SIMULATION METAMODEL

This chapter presents a general overview of the analysis of the output
of the simulation model. Section 3.1 describes the metamodel used. Section
3.2 describes the system performance measure of interest to model users,
the mean of a new replication. Methods of determining the distribution of a
new column mean are described using sampling theory in Section 3.3, and

using Bayesian theory in Section 3.4.

3.1 Two-way Random Effects Mode]

The balanced two-way random effects model, without interaction,
with one observation per cell, and with independent error terms is
presented as a metamodel for the analysis of output from repeated,

independent replications of a microsimulation model. This model is

Yij:\y+Ri+Cj+Eij, 3.1)

where Yii 18 the measurement on the characteristic of interest for the jth

decision unit in the jth replication. For the unobserved random variables on
the right side, it is assumed that they are statistically independent over all

(i, j} and have the following distributions:

the row/decision unit effect, R; ~ Normal(O, 012;)
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the column/replication effect, Cj ~ Normal(O, og} and,

the error term, Eﬁ ~ Normal(O, 0123)

2 2 2
There are four parameters: v, the overall mean; and o, ¢, Og, the row,

column, and error variances, respectively.

It is assumed that simple random samples are taken in each of the
effects dimensions; that is, a simple random sample of I row effects is
selected from the population of all possible row effects, and a simple
random sample of J column effects is selected from the population of all
possible column effects. It is further assumed that the row and column
populations are of infinite size, or, if finite then large enough that it is safe
to ignore the effects of sampling from finite populations.

This model is a special case of the two-way random effects model
given in Section 6.2 of Box and Tiao (1973, pp. 329 - 340). For this work, it is
assumed that no interaction between the decision unit and replication
effects occurs, and that there is a single observation for each decision unit
in each replication. Table 3.1 presents the analysis of variance formulas,
which summarize the sample information in a useful manner, and allow
the definition of three sums of squares notation.

The dot subscript notation indicates calculating the arithmetic mean

over that dimension:



| Table 3.1- Anal sis of Variance of Two-wa Random Effects Model

Source d.f. Sum of Squares E(Mean Square)
2 2 2
Overall mean 1 1J (?__ - w)z o + log + Jog
7. -7 )2 2 + Jo2
Row effect (I-1) z J (yi,-y ) O +J0g
1
* 7.-7 )2 2 4 Io2
Column effect (J-1) 2 I (y J--y_) Og c
i

. 7. -V.4+7 )2 o
Residual (I-1XJ-1) 2 (Yij')’i.'y\j+y-) E

Total 1J

The sums of squares shorthand notation follows the standard analysis of

variance definitions (Scheffe ,1959, Table 4.2.2, p. 103):

SSR=Y J (7{. . y_)z
i

SSE=Y, Y, (yﬁ-yi,-yd-w_)z
i Jj

The row and column dimensions, the sample mean, and the three sums of
squares, {I, J, ¥ ,SSR, SSC, SSE}, constitute a set of sufficient statistics for

the two-way random effects model. These sufficient statistics are

calculated from a more basic set of sufficient statistics, which has the
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advantage of eliminating the rounding error associated with the

calculation of averages when reporting the sample results:

g e )

i=l j=1 i=l  j=1 i=1 |j=1 j=1 [i=1

This set is used as input values in the analytic-numeric approximation

computer program discussed in Chapter 6.

3.2 New Column Mean

It is assumed that the model user is interested in the mean of a
randomly occurring, as yet unobserved, replication of the model. With
sample values being observed for I rows/decision units and J
columns/replications, an unobserved replication may, without loss of

generality, be referred to as the (J+1)th column. To focus attention on this

variable, let X; denote the mean of the jth replication of the model, where the
expectation is taken over the row/decision unit dimension, as given in

Equation (1.2):

X, = E{Yﬁ]
= Ei[\y +R, + Cj + Eu]

= \If + CJ . (3.2)

Since it 1s assumed that

C; ~ Normal(O, oﬁ) ,

it follows from Equation (3.2) that



X; ~ Normal(\y, og) :

In particular, it is desired to estimate Xj,;, the mean of the (J+1)th

replication, that is, the mean of any unobserved replication of the model.
When the model parameters are unknown, the sample data, and other
information in the Bayesian mode of analysis, are used to make inferences
about the unknown values. Frequentist theory and Bayesian theory follow

different inference approaches.

33 F i<t/Samoling TI \nalvsi

The frequentist confidence interval for Xj,; is developed by starting
with the assumption that all parameter values are known and then

removing the assumptions, first for the overall mean, and second for the

variances. Let (y;) represent the set of IJ observed values of the yj;'s; and let
o represent the set of variances {0}21, og, og} A hat (*) over a symbol

indicates an estimator of that symbol.

3.3.1 Confidence Interval for Xj,;, With y and ¢ Known

Since Xj,1 follows a normal distribution with

E(XJ+1 I\V' 0’) =V,

and

Var(XJ+1 Iw, o) = 0(2: ,

the (1- o) confidence interval for Xy, is

E: Z-(c?:)" 2, (3.3)
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h
where Z is the value of the (1 -%)t percentile from the standard normal
random variable distribution.

3.3.2 Confidence Interval for y, With ¢ Known

When vy is unknown, the sample mean is used ac an estimator of the

population mean;
A
vy=Y..

From sampling distribution theory, the sample mean follows a normal

E(‘y‘_) = v,

og + Joﬁ + Iog
Var(y | =
1J

Thus, a (1- ) confidence interval for y, assuming the variances are

distribution with

and

known, is

02 + Jok + o2 |2
y 2 . (3.4)
1J

3.3.3 Confidence Interval for Xj,;, With y Unknown and ¢ Known

When the mean parameter, vy, is unknown, its estimator is used in
the definition of Xj,;. Let Cj,1 be the unobserved effect for the (J+1)th

replication, then the estimator of the mean of the (J+1)th replication is



A A
XJ+1 =Y+ CJ+1

=¥ . +Cy- 3.5)

A
The estimator, Xj, ,, follows a normal distribution with

A
E(XMI i), o) =5.,

and, since all replication effects, C;, are independent,
Var(?_) + Var(C J +1)

c§+Jo§+Iog

Var(X 701 G, o)

2
+ C¢

IJ

G?.;, +Jo§+ IJ + 1)0?;

1J

Thus, the confidence interval for Xj,1, assuming y is unknown and the

variances are known, is

oz + Joi + I(J + 1)o2 2

(3.6)

i
H
N

IJ
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3.3.4 Confidence Interval for X;j,1, With All Parameters Unknown

When the variance parameters are unknown, their estimators are
used in the variance of the estimator of the (J+1)t® replication mean; the

expected value is not affected.

E(XJH I {yl.l}) = y :

A 3§+J3§+I(J+ 1)6%

A
Var(X;,, |y = : (3.7)
1J

Method-of-moments estimators for the variances are found by setting
the sample mean squares to their respective expected values. For the error

variance,

SSE

(I-1XJ-1)

MSE . (3.8)

For the column variance,

6%-{'16?3:
J-1)

MSC, so

, MSC-MSE
7 (3.9)




And for the row variance,

SSR
3,2.3 +J82 =
I-1)
= MSR, so
MSR - MSE
82 = . (3.10)
d

Equations (3.9) and (3.10) show how the row and column variances
may have negative estimates; the error variance estimate is always
positive, from Equation (3.8). The mean squares values are functions of the
sample data; when MSE > MSC the column variance estimate is negative,
and when MSE > MSR the row column variance estimate is negative. The
most common way of dealing with the negative estimates is to use the value
zero rather than the negative estimate. So, the numerator of the estimated
variance of the mean of Xj,1, Equation (3.7), may have either the row
variance estimate or the column variance estimate or both replaced by zero.

When all variance estimates are positive The numerator of Equation

(3.7), the estimator of the variance of Xj,1, is

0 . SSR J+1)SSC (J+1)SSE
82+ d8; + I(J + 1)62 + -
I-1 J-1 d-1XJ-1)

(J-1SSR +(I-1)J + 1)SSC - (J + 1)SSE
= : (3.11)
I-DJ-1)
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Thus, a (1 - a) confidence interval for Xj,,, assuming all parameters are

unknown, is

(J-1)SSR+(I-1)J + 1)SSC-(J + 1)SSE |2

«i
H
cr

JI-1)J-1)

th
where t is the value of the (1 - %) percentile of the Student's t distribution,

with degrees of freedom equal to (I- 1)(J - 1).
When the row variance estimate is negative The numerator of
Equation (3.7), the estimator of the variance of Xj,;, is obtained by setting
N2

or = 0;

80,

SSE SSC SSE
+WJ+1) -

i1+ 182 = ————
(I-1XJ- 1) J-1 (I-1DJ-1)

(I-1XJ + 1)SSC - J-SSE

(3.12)
(I-1XJ-1)

Thus, a (1 - a) confidence interval for Xj,3;, assuming all parameters are

unknown, is

(I-1)Jd + 1)SSC - J-SSE V2

y tt
IJI-1XJ - 1)

When the column variance estimate is negative The numerator of
Equation (3.7), the estimator of the variance of Xj,1, is obtained by setting



GC = 0,
so,
» . OSSR
8 +d0; = ——. (3.13)
I-1

Thus, a (1 - a) confidence interval for Xj,;, assuming all parameters are

unknown, is

IJAI- 1)

The numerator of Equation (3.7), the estimator of the variance of Xj,1, is

obtained by setting
82 = 0, and
62 = 0;
80,
0 SSE
g = : (3.14)
I-1XJ-1)

Thus, a (1- «) confidence interval for Xj,;, assuming all parameters are

unknown, is

SSE V2

~li
H+
<

JI-1XJ - 1)
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34 B ian Analvsi
The objective is to find the posterior distribution of Xj,;. This

posterior distribution is determined by integrating, over the model

parameters, the product of the conditional distribution of Xj,1, given its
mean and variance parameters, with the joint posterior distribution of the

model parameters.

AXonl o)

400 400 00 oo

o j .[ j J f(XJ-d IW' 0(22) f(‘y. 0?2! 0%7 GEZ) I blu})dog dO'(Z; dC;zl d\y
R 0 0

« | f(xJ+1 | e) -f(e ‘b’ij})de ,
e
where 6 denotes the set of model parameters {\y, oﬁ, 0(2;, og}, and ©

represents the domains of integration for 6. Note that the conditional
distribution of Xj,1, given its mean and variance parameters, is

independent of the row and error variances and of the data; so

2 2 2 2
(XJ-#]. l\". CC) = /(XJ+1 I\I’, On, Oc Ok LYU}) , OT

%s19) = (Xsalo. ).

When the posterior distribution of model parameters is factored into the

likelihood and prior distributions, Equation (3.8) becomes

Xoalo) = [7(Xs1l6)L (e lw) -f(e ) de.
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The integration over y can be performed analytically, while the
integrations over {o%, og, og} are not tractable and need to be approximated.

The derivation of the prior and likelihood functions, and integration over
the mean parameter, y, are presented in Chapter 4; approximations of the
integrals over the variances are developed in Chapter 5; implementation of
the approximations of the integrals, and presentation of results, are given

in Chapter 6.



CHAPTER 4
EXACT ANALYSIS FOR FOR THE POSTERIOR DISTRIBUTION OF THE
MEAN OF THE (J+1)TH REPLICATION

This chapter presents analytical results for the Bayesian analysis of
the posterior distribution of the mean of a new column of a balanced, two-
way random effects model, the mean of the (J+1)th replication of the
microsimulation model. The derivation of the likelihood function of the
metamodel is presented in section 4.1. Informative and non-informative
prior distributions are described in section 4.2. Section 4.3 presents the
joint posterior distribution of the metamodel parameters. Section 4.4
presents the posterior distribution of the mean of the (J+1)th replication.
The expected value and variance of the mean of the (J+1)th replication are
needed for the approximation methods discussed in Chapter 5; their
derivations are presented in sections 4.5 and 4.6, respectively. The
distributions of the random variables used in this chapter are defined in

Appendix E.

' 1 Likelihood Funct;

As described in Chapter 3, the simulation metamodel is

Yi=v+R +C;+E;, 4.1)

where Yj; is the measurement on the characteristic of interest for the ith

decision unit in the jth replication. For the random variables on the right



4

side, it is assumed that they are statistically independent over all {i, j} and

have the following distributions:

R, ~ Normal(O, 612;)

C; ~ Normal(o, 0?, and,

E ~ Normal(O, cﬁ)

There are four parameters: v, the overall mean; and 0121, cg, 0%, the row,

column, and error variances, respectively.
Let {y;;) denote the set of IJ observations on the dependent variable,
yij's; let (R;} denote the set of I decision unit effects, R;'s; let {C;} denote the

set of J replication effects, C;'s; {E;;} denote the set of 1J error terms, Ejj's.
Let 0 denote the model parameter set {\p, oﬁ, cg, oﬁ}, and let L(G | {yﬁ}) denote

the likelihood of the parameter set conditioned on the observed data. Let
2(-) denote a general function; and let {:) denote a probability density
function. The kernel of a probability density function is the part of the
function that changes with the random variable; a kernel is proportional to
a probability density function, omitting all constants (see Raiffa and
Schlaifer, 1961, p. 30).

The likelihood function of the parameter set is proportional to the

probability of observing the data conditioned upon the parameter values;

L(oltyy) fole).
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The right side of this equation is the joint probability of the IJ observed
values of individual yjj's. This joint probability of {y;) is found by integrating

the joint probability of ([yij}, (R;}, [Cj]) over the Ri's and Cj's,
+ o0 +00

I J
fogle)= [ _if(tvﬁ}, (Ry), {cj}le)l‘[ dR; j]}dcj SR

i=1

The joint probability function may be factored, using the assumption that

the R; and C; are statistically independent over all i and j,
f(Lvi,-l, Ry, (Cy)| e) = f(Lyij] |®Ry), (C}), e) : f([Ri] o ) f([cj} | 9)_ 4.3)

For the decision unit effects, with mean equal to zero, and

independence across decision units,

f({RiH o;‘;) = fI f(Ri lo, cﬁ)

i=1l

I -R,?
=I1 (Znoi)'mex 3
i=1 203
I Ri2

= (21to§)'mex Y — . (4.4)
=1 20R

Similarly, for the replication effects, with mean equal to zero, and

independence across replications,

J C.2

{(lelog) = (21:03)'”2 expl - Y —3—2— : (4.5)

m1 20c



For the error terms, with mean equal to zero,

-1 4.6)

/{Eul {R,}; (CJ}’ 9) = (21!0'123)- vz exp| - 2GE

Transforming the model in Equation (4.1) gives
Elj = Yij'\V'Ri‘CJ' .
Incorporating this transformation, with a Jacobian equal to 1, into the

normal probability distribution for the random error terms in Equation (4.6)

gives
2
)

20¢

l(Yﬁl(Rj}p (C;l, 6) = (Znof;)' V2 oxp| -

And, since the (yij | R}, [Cj], 9) are independent over all i and j,

2
roJ (Yij'“"Ri'Cj)

/({Yij”(Ri]. (Cy), 9) = (21[03)-1.1/2 exp{ -2 o . 4.7
i=l j=1

Substituting Equations (4.4), (4.5), and (4.7) into Equation (4.3) and

then into Equation (4.2), gives,

/(LY,'J-} 19) = (2 n)' (1J +T+Jd)y2 (0}22)-1/2 (0(23)"]/2 (Og)' R

x i _ig(Ri, Cj)]'l'[dRi IJIdcj,

i=l J=1

where
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2

1 R?* J CJ.2 1 J (yu"V‘Ri'CJ)
g(R, C;) = exp - X 72 222 2
(1 J) i=1 20R ja1 20c =1 j= 20g

The integrations over the R; and the C; are performed analytically in
Appendix F.

+oo oo I J
[ e (Ri, cj)H dR; [l dc,
et e i=1 j=1

. 2 2v-(I- 2 2+ -(J -
- (2 n)(n.m (63)112 (0(2:).1/2 (012.;)(“‘] 1¥2 (°E+JOR) (I-1u2 (OE + Ioc) J-12

2 ]
X (012_; +Jog + Io?;) 12

1J (?.. - w)z
SSE SSR SSC

x exp) - - - . )
b 20523 2(0%+Jo§) 2(o§+lo%) 2(0,2.3+Jo§+10?;)

Substituting for the integrals,



figle) (o) 1) () o)
o) ) k)

(o +Ic) a- 1)/2(0 +JGR+IO'C) vz

IJ (7_- w)2
SSE SSR SSC
x exp| - - - -

200 2 (of; + Jog) 2(0% + Iog) 2 (o% +Jos + 102)

= (21{)-1‘"2( )(I IXJ - 1)/2(6 +Jo. ) a- 1)’2(0. +IOC) W-12

X (of; +Jof + Ics?;)'ll2

W(y.- \ij
SSE __ SSR SSC

205 . 2(05+J0;2;) ] 2(0;.2;+Io§) -2(o%+Jc§+1(,g) y

x exp)| -

Omitting constant terms, the kernel of the likelihood function may be

expressed as:



L(e Iwﬁl)

-(I- . -(I- . . 2\ -
o (og) (- 1XJ - 12 (o§+Jo§) (I-172 (of;-rlog) (J-1¥2 (of;+Jo§+IoC) vz

IJ@-W)2
><exp_SSE SSR SSC ) —|. 8

262 ) 2(0}2;+Jo§) ) 2(cg+lo(2-,) 2(0%+Jc§+loc)

.2 Prior Distributions For Mode] P

4.2.1 Informative priors

Conjugate prior distributions for the set of model parameters,
{\y, 0,22, o?,, 012.3}, are used throughout. It is assumed that the row variance

and column variance are statistically independent, so the joint prior

distribution can be factored as
2 2 2 2| 2 2 2 2
/(\V: ORr» Oc» OE) = /‘(\\ulolzb o(z)v 01?:) 'f(GR IGE) 'f(oc IGE) f(GE) .
The prior distribution for y conditional on {012;, og, og} is assumed to be

2 2 2
og +dJog + Iog

normal, with parameters y and - ,

cf; + Jog + Iog
2 2 2
(\y |<5R, Co GE) ~ Normal(p, . ;

80,



o + Jog + Iog )~ 12 -(\V-u)z
I 2102» 2 o< ex
/[W or 00 O T P oz + Jop + Iog )
2
| 1 )

{r)

2(0% + Joﬁ + 162)

2 .2 2 -
o (O'E +dJog + Ioc) 12 exp

The prior distribution for of; is assumed to be Inverse Gamma, with
parameters og and Bg,

2
og ~ Inverse Gamma(aE. BE);

so,

(0%) - (G%)'(%”)exp[ oé:IBE :' .

The prior distribution for og conditional on 0123, and independent of og,

is assumed to have the following form with parameters og and fg,
. 1 -
/(6;2;|0§) o (o%+Jc§) O+ )exp 2 12 :
(GE + JoR) Br

This is equivalent to assuming that

(of; + Joﬁ) ~ Inverse Gamma[an, BR).
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Similarly, the prior distribution for og conditional on cf;, and

independent of og, is assumed to have the following form with parameters

(o ¥o} and Bc,

f(o,z3+lo(2:) o (012;;+ Io%)'(ucﬂ)exp > '12 :
(UE + IGc)Bc

This is equivalent to assuming that

(035 + Iog) ~ Inverse Gamma(ac, BC) :

Multiplying the above prior distribution kernels gives the kernel of

the joint prior distribution.

(c%+Jo,2;+Iog]'1’2 | -1(‘4!-1.1)2
2
)oc ex

fly o2, 62, G
(' B oo TR T 2(012.3+J0§+Iog)
2 2\ -(ag +1) -1 i
x(cE+J ) X, 5 5
(GE+JGR)BR




. ) (o +1 - 1 -1/2
o (cg) O+ (o§+Jo;2¢) %t )(01,2;+Iog) O+ )(og +Jc]2;+10<2;)

-1 -1 2
B B f@f—u]
x exp| - - = . - X (4.9)
p cf; o§+Iog o§+Jo§ 2(0%+J6§+Iog)

4.2.2 Non-informative priors

The non-informative prior distributions are obtained from the
informative prior distributions by taking the prior distribution parameters,
1, o, and B, to their respective limiting values as follows: for the prior
distribution of the mean v, let 1 — 0; for each of the variance prior
distributions, let « = 0 and B — o. Using these limiting values, the prior

distribution for y is locally uniform, and the prior distributions for the
: : 2 2 2 2 2
variance functions, log(oE + JOR), log(oE + Ioc) and log(oE} are locally

uniform.
Applying the limiting values on 1, o, and B to the joint prior
distribution in Equation (4.9) gives

/(\y, o2, 02, 0,25) oc (02)'1 (01,23+Jo,2;)'1 (0,23+Iog)'1-

Note that these priors are improper, in the usual sense that they do not

integrate to unity.

3 Joint P ior Distribution of Model P

The joint posterior distribution of model parameters is proportional to

the product of the likelihood function and the prior distribution.
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Multiplying the likelihood function, Equation (4.8), and the joint
informative prior distribution, Equation (4.9), gives the joint posterior

distribution.

/(e |ty

o (of;)'a "I -2 (o% + ch)'(I S (o% + Iog)'(" -172

2 2 2. -
x(oE +Jog + Icc) v2

1J (?_- \y)2
SSE SSR SSC
x exp| - .

2 oo ) 2(0%+Jc§) ] 2(o§+log) 2(0%+Jo§+10%)

X (o%)'(%”) (0}23 +Jo§)-(a"+l) (012; + Iog)-(%“)

2 2 2y - 112
X (GE +dJog + Ioc)

-1 -1 . 2
Pe Bc ﬂnl T(‘V’ “)
x exp| - - - -
of; og + 10(2; cé + Jcﬁ 2(0% + Jog + Iog)
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o (GE) & (o% +d 0%) o (of; + Ioc) %

SSE +2B;! SSR+2p;' SSC+2pg"

208 2(o§+Jo§) ) 2(c§+1o3)

2 2 -1
X (oE +dJog + Io?;) exp| -

IJ i__-\y)zwc(\y-u]z

2(0;2; + Joﬁ + Io%)

x exp| -

Let o denote the set of variances, {oﬁ, 0%, o%}, then 6 = (\y, o} and let £

denote the domain of integration for .

/(e | [yij}) = f(\y, ol {yij])

S -1-J + 20 +3 (I+20 +1 -+ 20 +1)2
= Cl(o%) M yz(of;+Jo§) 1+ 205+ 1)2 (o§+log) Yt

SSE +28;1 SSR+2p;' SSC+2Bg’

201.2; ) 2(0§+Jo§) ) 2(0%+Io%)

1J (?..-WJ2+ 1 (\v- u)z

2(0,.?5 +Jod + Ioﬁ)

x(o§+Jo§ + Iog)' Lexp -

x exp) - , (4.10)

where C, denotes the normalizing constant.

The normalizing constant is defined in Appendix G; after integrating

over vy,
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12 <} d .
Ci - zfg(ol{yul) o (4.11)

where

ST -1-J+ 20y + 32 -1+ 20 + 12 - + 205+ 102
g(ol[yﬁ})=(og) +20y+ (ogJ,Jog) + 20, + (ofguog) + 200+

. SSE +2B;° SSR+2p;' SSC+2p:"
2 2 2\ "

X (op +dJop + Io exp| - - -
(o5 + ok + Ioc) 2} o(dheioR) 2(eRe1a)

It (u - y_)z
X exp . (4.12)

2(IJ + T)(G% +J05 + Iog)

L4 P ior Distribution of the M f the (J+1)th Replicati

As discussed in Section 2 of Chapter 3, it is assumed that the model
user is interested in the mean of a randomly occurring, as yet unobserved,
replication of the model which, without loss of generality, may be referred

to as the (J+1)th replication. In particular, it is desired to estimate Xy,1, the

mean of the (J+1)t replication. From Equation (3.2),

Xg = V+Cyuy

and

X, ~ Normal(\y, og) :
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The posterior distribution of the mean of the (J+1)th replication is
found by integrating, over the model parameters, the joint distribution of
the mean of the (J+1)th replication and the model parameters:

+ 00

(Roalt) = | J7[Ssnwoling)ava.
2 - 00

The integrand is obtained by multiplying the conditional distribution of the
mean of the (J+1)th replication by the posterior distribution of the model

parameters, Equation (4.10).

/[X.m» v, ol {yi,-l) = /(X.m ly, 0) -f(\v. ol Lvi,-l)

(WJ-1-J+2 3 -(I+2 1 -J+2 12
xCI(og) + 205 + W(Gg+JO§)(+aR+ )/2(02+Iog)(+oc+

SSE +2B;' SSR+2p;' SSC+2pG"

20?‘; ) 2(0%+J6§) ) 2(0‘%-1-10(23)

IJ('Y_,‘\V)z +1 (w- u)z

2(0}2; +Joh + Io%)

x(o§+Jo§ +Io§)'1ex .

x exp| -
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S(T-1-J+20,+3 ~(I+20, +1
=Cl(2no(2;)'1/2(o§)( +0"+y2(c%+Jo§)(+%+y2

-(J + 20+ 1)V2

-1
X (cﬁ + Iog) (of; +Jo2 + 10(23)

[ SSE+2PB;° SSR+2B;' SSC+2p°
xexp| - .- -
P 20% 2(0%+Jo§) 2(0%-»102)
i | _ 2 2
(X.m'\lf)z IJ(y" \y) +1(\y-p)
x exp| - -
203 2(0% + Joﬁ + Iog)

The integration over v is performed analytically in Appendix H,
giving the joint distribution of the mean of the (J+1)th replication and the
variances.

+ oo

jf(XJH’W’o'{yij})dw = /(X.m: ol {yij})
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- 12
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[ SSE+2p;' SSR+2Pz’ SSC+2p’
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P 20% 2(0%+J0§) 2(0,,2;+Ic<2;)
_ -
0y +1p |2
- \2 X-—0
IJT(”'Y-) IJ +1
X exp - 2 L2 - 2\ 2 . 2 2
2(IJ + t)(oE + Jog + Ioc) og + Jog + (I +1J+ 1)0(:
2
IJ+1 |

(4.13)

The posterior distribution of the mean of the (J+1)th replication can

now be expressed as
/(XM | [yij}) = jf(xm, ol Lvﬁ])do. (4.14)
z

Analytic solutions for the integrations over the variances, ¢, in Equation
(4.14) have not been found; approximations based on LaPlace's method are

presented in Chapter 5 and implemented in Chapter 6.



The posterior expected value of the mean of the (J+1)th replication is
found by taking the expected value of Xj,; with respect to its posterior

distribution, given in Equation (4.14). The integrations are performed in

Appendix L.
+ oo
B{XJH I {yul] = .;[x J+1'/[XJ+1 l [yii})dXJﬂ

+ 00

_;[ }.:.[ X J+1'/[xJ+1’ OI Lvij])do de+1 .

Jy +1u
) (4.15)

IJ +1

a weighted average of the prior mean and the mean of the observations,

consistent with DeGroot (1970, Theorem 1, page 196).

4.6 Posterior Variance of the Mean of the (J+1)* Replication

The posterior variance of the mean of the (J+1)t! replication is
2
V[XJH l {yij)] = E{XJH IY] - (%XJH l Lyij]])z

Iy +1p |2

2
- E{xmly]- —, (4.16)
IJ+1



after substituting for the posterior expected value from Equation (4.15). The
2 . .
posterior expected value of Xj,, is found by using Equation (4.14). The

integrations, to the extent possible, are performed in Appendix J.

I{X.%u | Y]

+ 0o
2
J X +1'/[XJ+1 | [Yu})dxm

+ oo

I ,[ X ?I+1'/(XJ+1’ ol {yij]) do dX;,,

- OO z

Jy +tp 2

Id +1

o§+Jc§+(I+IJ+t)og

g(ol ) |do

p3 IJ+1

J g (ol))do

where g(ol {yij]) is given in Equation (4.12). Substituting into Equation

(4.16), the squares of the posterior expected value cancel, giving

o§+Jo§+(I+IJ+1)o<2;

I ‘& (ol {yij})dﬁ

z IJ+1

i[g (Glb’ij])do

V[X sl {yijl] = . 417

As with the posterior distribution of the mean of the (J+1)th replication in

Equation (4.14), analytic solutions for the integrations over the variances, o,
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in the numerator and denominator in Equation (4.17) have not been found;
approximations based on LaPlace's method are presented in Chapter 5 and

implemented in Chapter 6.



CHAPTER 5
APPROXIMATION ANALYSIS FOR THE POSTERIOR DISTRIBUTION
OF THE MEAN OF THE (J+1)TH REPLICATION

This chapter presents methods for obtaining approximate values for
the integrals in the posterior distﬁbuﬁon, and variance, of the mean of the
(J+1)th replication of the microsimulation model. Section 5.1 presents the
general strategy used in finding approximate values for the intractable
integrals from Chapter 4, and gives a general integrand function that
includes all cases. Section 5.2 presents the LaPlace method for integral
approximation, and four special situations that arise for the two-way
random effects model. Sections 5.3 through 5.6 present the LaPlace method
applied to the four special situations.

5.1.1 In general

The posterior distribution of the mean of the (J+1)th replication of a
microsimulation model is derived in Chapter 4, given in Equation (4.14) and

repeated here.
/(XJH I Lyi_j}) = j f(x,hp Ol LYU])dO' . (5.1)
T

The integrand is given in Equation (4,13); it contains a normalizing

constant, C;, whose inverse is given in Equation (4.11) and repeated here;



2n |12

c,! = - zJ'g(cl{yij})do.

Integrations over the variances thus appear in the numerator and
the denominator of the right side of the posterior distribution; however,
these integrations are intractable. Approximations for these integrals,
based on LaPlace's method, are developed later in this chapter. This
method is described in detail in Bruijn (1961), and applied to Bayesian
analysis by Leonard (1982) and a number of articles including Kass,
Tierney and Kadane (1988), Tierney and Kadane (1986) and Tierney, Kass
and Kadane (1987, 1989a, 1989b).

The general idea of LaPlace’'s method is to approximate the value of
the integral by a function of the integrand evaluated at its mode. In some
situations the mode can be found algebraically, and the LaPlace
approximation can be solved algebraically as a function of the variable of
integration. See Tierney and Kadane (1986) for examples involving simpler
integrands which permit an algebraic solution for the approximation of the
integral. When the integrand is sufficiently complex that the mode cannot
be found algebraically, as the case here using the two-way random effects
model, the LaPlace method can be used by finding the mode, and evaluating
the approximation function, using numerical methods.

Since the modes for the variances in the integrands in Equation (5.1)
must be found numerically, the integral can be approximated only for a
specific value of Xj,;. Consequently, the approximation procedure must be
repeated for each point in an appropriate interval for Xj,;. This sequence of

approximations produces a discrete set of values that approximates, after
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appropriate re-scaling, the continuous posterior distribution of Xj,;. As
noted in Tierney, Kass and Kadane (1989a),

"A weakness of these approximations is that they generally do
not integrate to one. Numerical integration has to be used to
renormalize the approximations. ... the shape of the marginal
density is approximated more accurately than the constant of
integration.”

The values of Xj,; in a symmetric interval around its posterior mean
constitute an appropriate set over which to approximate the posterior
distribution of Xj,;. Examination of the kernel of the posterior distribution
of Xj,1 reveals a normal density function, conditioned on the variances and

the data; from Equation (4.13),

Iy +1p |2

X-
IJ +

/[XJ+1|G» [yﬁ]) o< exp| - o o 0
og +Jog + (I +1J +T)0c

2
IJ+1

Thus, the posterior distribution will have its mode at, and be symmetric
around, the posterior mean, which is also the median.

The values of Xj,1 in a symmetric interval around its posterior mean
may be determined by specifying the midpoint of the interval, the half-width
of the interval and the number of points at which the approximation is
calculated. The midpoint and half-width of the interval are determined
using the mean and standard deviation of the distribution; the number of
points at which the approximations are made determines the resolution of
the results, and can be specified by the model user. The posterior mean of

XJ+11s given in Equation (4.15); the posterior standard deviation of X3,



(5]

must be approximated using LaPlace's method twice, once each in the
numerator and the denominator of the posterior variance, given in

Equation (4.17) and repeated here.

o§+Jo§+(I+IJ+t)og
] &(oltyg)do

z IJ +1
] = . (6.2)
V[XM | LY”}] I (cl Lvﬁ])do
z

Note that the integrals in the denominators of Equations (5.1) and
(5.2) are the same; this is the integral of the kernel of the joint posterior

distribution of the variances.

5.1.2 Functions to be estimated

There are three integrals to be approximated: (1) the numerator of
the posterior distribution of Xj,1, performed once for each value of Xj4; in
the appropriate set; (2) the denominator of the posterior variance of Xj,1;
and (3) the numerator of the posterior variance of Xj,;.

Numerator of the posterior distribution From Equation (4.11), the
integrand of Equation (5.1) is
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/(xmol{yﬁl)

S(1-1-J+2a_+3)2 -(1+ 20, + 1/2 - + 20+ 1)2
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[ SSE+2B;' SSR+2Ps' SSC+2p;!
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2 o0 z(c§+Jo§) z(og+xog)
i Iy +tp |2
~\2 X-—
| IJ‘(”'Y-) 1IJ+1
x exp| - 5 .92 ..o 2 .2 2
2(IJ + T)(GE +Jog + Ioc) o + Jog + (I +1J + 'c)oc
2
IJ+1
e wnd
(5.3)

Denominator of the posterior variance The integrand of the
denominator integral in Equation (5.2) is given in Equation (4.12),



o\ -(LJ-1-J + 20, + 32 ~(I+20,+1)¥2
g(c |(yij}) = (GE) % (og +Jo§) o

2 . 2 -W+20+1)2 12
x(oE+Ioc) % (o§+Jo§+Iog)

[ SSE+2pB;' SSR+2B;° SSC+2Ba"
x exp| - - -
2033 2(0,2.3+Jo§) 2(0%+Iog)
i IJ &- y’_)z
x exp| - " " " (5.4)
Z(IJ + T)(GE +Jog + Ioc)
Numerator of the posterior variance The integrand of the numerator

in Equation (5.2) is also determined from Equation (4.12),
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i IJ1 (u - y_)z
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2(IJ + ‘t) (UE +dJog + Ioc)

5.1.3 General function for integrands

The three integrands listed above are special cases of the following

common general function, to be integrated over the three variances.

J 1] g(oi, o% o%)dc%do%do%. (5.6)
0 0 O

2 2 2
where, g(og, oG, GE)



’ oa\-W1 o 2.-W2 _ o 2.-W3 o 2 9. - W4
= (O’E) (0E+J0R) (oE+ Ioc) (0E+J0R+IOC)

2 2 2|- W5 W6 W7
X 0E+J0R+(I+IJ+T)OC expl-—35 - 3 5
Op og + Joj

W8 W9 W10

Xexpl-—o 2 " 2 2 2 -
og+loc  og+dog+Iog o%+JG§+(I+IJ+t)og

Table 5.1 presents the values for W1 to W4 and W6 to W9 which are
the same for all three integrands; Table 5.2 presents the values for W5 and
W10, which are different for the three integrands. The approximations
based on LaPlace's method for integrals are described in terms of this

general function in Sections 5.3 through 5.6.

Table 5.1 - Common Exgonent Values

Exponent Value Exponent Value
W1 IJ-I-J;-ZOLE+3 W6 SgE +[31~51
SS ;
w2 A2+l W1 =
SSC ]
W3 i]_'*'_z_gﬁﬂ W8 5+ Be 1
1 _\2
W4 > W g (u - yj

2(1J+z)




Table 5.2 - Variable Exgonent Values

Value for
Variance
Exponent Posterior Distribution Num. Den.

1
W5 9 -1 0
W10 e uy +w > 0 0

X -

2 IJ+1
' h rl r

5.2.1 General description

Using the notation in Bruijn (1961, Chapter 4), LaPlace's method
provides approximate values for integrals of a general function of two
parameters, ¢(x, t), when ¢ is large; the following form of integrand is used

in the examples given in Bruijn's chapter 4:

Jesn[en(xas.

In general, asymptotically as t—eo, the value of the integral depends on the
behavior of the integrand near its mode, say x*. Outside of some
neighborhood around the mode, the value of the integral is small as
compared to the value of the integral inside the neighborhood; and inside
the neighborhood, the integrand is approximated by a simpler function for
which the integral can be evaluated. The simpler function used is a Taylor

series expansion around the mode.
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In statistical applications, as discussed in the articles by Leonard,
Kass, Tierney and Kadane cited earlier, as well as Berger (1985, p. 266), the
integrand is expressed as a product of a general function of the parameters
and the posterior distribution of the parameters, which are the variables of

integration. In the context of the integrals to be approximated in Equations

(5.1) and (5.2), let g(c) denote a general function of the three variances
denoted by o; as before, fio | (v;j)) denotes the joint posterior distribution of the

three variances. The three integrals from section 5.1 be expressed in the

general form:

e o
0 0
Here, the function log[g(c )/(0 |[yﬁ})] replaces Bruijn's function t-h( x)

The ¢ in Bruijn's expression of the integrand typically denotes the sample
size in statistical applications. For the numerator of the posterior

distribution,
()

Uy +1p |2

X.
IJ+1

oc [0123+Jo§+(1 +1J +t)c(23}'l/2exp“ - ,
o§+Jo§+(I+IJ+t)c(23

2
IJ+1




where the proportionality is due to the difference in the normalizing
constants in the numerator and denominator integrands in Equation (5.1).

For the denominator of the posterior variance,

g( o) =1,
And for the numerator of the posterior variance,

o§+Jo§+(I+IJ+t)o(2;
{°)"
IJ + 1

When applying LaPlace's method to the integrals in Expression (5.6),

care must be used in observing the values of the modes of the integrand,
since the domains of integration for the variances are limited to (0, o).
Depending on the sample data and prior parameter values, the modes of
the integrand may occur at interior points of the domains of integration, or
they may.occur at-the zero boundary in the row variance and/or column
variance dimensions; the error variance mode will always be a positive
value. The application of LaPlace's method when the mode is positive is
different than the application when the mode is at the zero boundary.
Thus, four different situations may arise depending upon the values of the
modes for the column variance and row variance; these are summarized in
the Table 5.3.

The strategy is to numerically find the values of the three variances
that maximize the integrand of Expression (5.6) over the non-negative
octant of the three dimension parameter space. The type of analysis is

determined by the values of the row variance mode and column variance
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1 positive positive positive
2 zero positive positive
3 positive zero positive
4 zero Zero positive

mode, following the criteria in Table 5.3. Three variations on the LaPlace
method are used to handle the various situations encountered in Type 1
through 4; these are described in the following subsections: section 5.2.2
presents LaPlace's method as applied to a single integral with the mode at
the zero boundary; section 5.2.3 presents LaPlace's method as applied to a
single integral with a positive mode; and section 5.2.4 presents LaPlace's
method as applied to multiple integrals with positive modes in each
dimension. These applications of LaPlace's method are combined to give
the functions used in the application of LaPlace's method to Expression
(5.6) for situation Types 1 through 4; these functions are presented in
sections 5.3 through 5.6, respectively. Only the Type 1 situation is directly
analogous to the Kass, Tierney and Kadane application of LaPlace's

method.

5.2.2 Approximating a single integral with mode at zero

For a single integral, when the maximum of the integrand occurs at

the boundary x = 0, LaPlace's method gives, from Bruijn (1961, Section 4.3),

ofexp[t-h(x)]dx~[-t-h'(0):|'1ex ,.,,(0)] (t_m)_



&

This result is used in Type 2 situations for the integration with
respect to og, in Type 3 situations for the integration with respect to 0;21, or in

Type 4 situations, sequentially, for the integrations with respect to og and

0122. The approximate value for the integral is found analytically,

Jexolode{ oo o]}

exp{zog{g(o )/(o ILvﬁl):
: %lo&{g(o)/‘(o ILvﬁ}]

g(o)f(o IL@ -
__af’;,(,g[g(o )/to Ifyﬁl)} ge0

5.2.3 Approximating a single integral with positive mode

o0

; g(c)/(c |Lvij])do

W—/

{
—_
Q
"
o

For a single integral, when the maximum of the integrand occurs at
an inner point of the interval, say x*, using the results from Bruijn (1961,

Section 4.2),
_[ exp[t-h (x ):l dx = (2 n)m[-t-h"(x*)] 2 exp[t-h (x*)] (t - oo) .
0
This result is only used in a Type 4 situation, for integration over o%,

after having used Equation (5.7) sequentially with respect to the row and

column variances. Due to the complexity of the integrand its mode cannot



be found analytically. The mode of the integrand, and the approximate
value of the integral using LaPlace's method, are found numerically using
the computer program described in Chapter 6.

To find the mode of the integrand, the computer program uses an
optimization subroutine from IMSL (1978a). This subroutine produces as
output the minimum value of a multi-dimension function, as well as the
points where that minimum value is attained; the subroutine uses as input
separate, additional subroutines to evaluate the objective function, the
gradient vector of first partial derivatives, and the Hessian matrix of second
partial derivatives. To simplify the structure of the computer program, the

log of the inverse of the integrand in Expression (5.6) is used as the objective

function of the minimization subroutine. Let log| g( x )] "1 denote the log of

the inverse of g(x); then the value of x that maximizes g(x) is the same value

that minimizes log| g( x )'1]. And evaluating g(x) at its mode is equivalent

to evaluating exp{-lo g(x )'l]} at the same point. The reason for adopting

this transformation is computational efficiency; an advantage of this
transformation is being able to use the subroutine which computes the
Hessian matrix for the minimization subroutine to also evaluate the
denominator in the LaPlace approximation.

The approximation is expressed as:

oo

o (GEyfetlug)et - Jers PrOEIE:
- Jerofufrfeion) s



ex:{-log[{g(o%)/(o% | [yﬁ})} l]}
{(aig)z o)) oo

(5.8)

omitting constants, where (of;)* denotes the mode of g(o%)f(o% | [yij}) :

5.2.4 Approximating multiple integrals with all modes positive

For n-tuple integrals, when the maxima of the integrands occur at

inner points of the intervals, say x*, from Bruijn (1961, Section 4.6),

o0

ojm... Oj exp [t-h (x )] dx = (2 n)“’zdee(n*)'m exp[t-h ( x*)]
(-

where H denotes the (n X n) matrix with (i, j) elements

2
Hj; = -I:axjaxj t-h(x )]

and H*, denotes the matrix H evaluated at the modes, x*.

This result is used in Type 1, Type 2, or Type 3 situations, for the
integrations over the variances with positive modes in Expression (5.6). In
each of those situations, the modes cannot be found analytically, so the

approximation is evaluated numerically. Here, o denotes the set of

variances with positive modes, which set changes depending on the data
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type: for Type 1,0 = {of;, c;zz, og} with n = 3; for Type 2,6 = {cﬁ, ofi} with n = 2;

and for Type 3,0 = {cg, cg} with n = 2.

Yool ol
foffe )

det(H) .

=0

, (5.9)

ll

omitting constants, where 6* denotes the modes of the variances and H

denotes the (n xn) matrix with (i, Jj) elements

el

When the column variance, row variance, and error variance modes

all have positive values, an approximate value for Expression (5.6) is found

by applying Equation (5.9) with respect to all three variances.

] o0

[ 1] g(ﬁﬁ. oa, 0§)d6§d0<2:d03 (5.10)
0 0 o

.~, exp{-zog[g(oﬁ, oZ, of;)'l]}

det(H)m 6207, 020,020
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2
where G, * denotes the mode, and H denotes the (3x3) matrix with (i,7)

elements
8%lo g(c{‘l, os, o%)'l]
a(of ) a(of )

The approximation is performed numerically, using the following

H; = , ije {R,C,E}.

functions which are derived in Appendix K. For the numerator:
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For the denominator, the second derivatives of the integrand are used in the

Hessian matrix.
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When the column variance mode is at the zero boundary, and the row
variance and error variance modes have positive values, an approximate
value for Expression (5.6) is found in a two step process. First, Equation

(5.7) is applied to Expression (5.6) with respect to the column variance;



second, Equation (5.9) is applied to the result from the first step with respect
to the row variance and error variance.

Step 1: Equation (5.7) is applied to Expression (5.6) with respect to the
column variance; details are presented in Appendix L.1.
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where o, ¥ denotes the mode, and H denotes the (2x2) matrix with (i, J)

elements

o, g(oﬁ, of;)'l]
H = N , ije {R,E}.
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The approximation is performed numerically, using the following

functions which are derived in Appendix L.2. For the numerator:
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For the denominator, the second derivatives of the integrand are used in the

Hessian matrix.
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When the row variance mode is at the zero boundary, and the row
variance and error variance modes have positive values, an approximate
value for Expression (5.6) is found in a two step process. First, Equation
(5.7) is applied to Expression (5.6) with respect to the row variance; second,
Equation (5.9) is applied to the result from the first step with respect to the
column variance and error variances.

Step 1: Equation (5.7) is applied to Expression (5.6) with respect to the

row variance; details are presented in Appendix M.1.
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where o, ¥ denotes the mode, and H denotes the (2x2) matrix with (i, j)

elements
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The approximation is performed numerically, using the following

functions which are derived in Appendix M.2. For the numerator:
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For the denominator, the second derivatives of the integrand are used in the

Hessian matrix.



12-(W3 + W4)

(1+

100

1J + z)Z-W5

ZIZ-QNS + wg)

(oE + Iog

2 2 22 *
) [0E+(I+ IJ+1)0C]

2

(oﬁ + 102)3

2(1+ 1J + 1 EW10

+

+

\

l:of;+ (I +1J + 'c)o?{]a

21%. W4

2(I+IJ+1)2-W5 )

2 2.3 T
(oE + 100)3

612.W9

{UE +

2

(I +1J + t)og]s

6(I+IJ+1 W10

(012.; + 102)4 [ 2

2
O +

(I+IJ+1)02]4 )

( W2 W4 W5
tTo vt 2t 9
o op+loc oE+(I+IJ+t)oC
X
W7 W9 W10
EN RN 2
(GE) (GE + IGC) [o% + (I +1J + 1}’(2:]



/

+

\

101

\

W4 (1 +1T+ 1)W5

N

2 2\2
(GE + IGC) {0% + (I +1J + 1}52]2

2I.-W9 2(1 +1J + t)WlO

+
2 . 2
(O’E + 100)3 {oﬁ +

(I+IJ+1)02:|3}

\-2

( w2 W4 W5
2V 21T e 2
O Og+iGc GE+(I+IJ+I)UC
x
w7 w9 W10
- 2.2 2 2.2 °
(GE) (°E + IGC) [0123 + (I +1J + r)og

\

I



102

32lo g‘(oﬁ, o%) ‘1]

R

I-(W3 + W4) (1 +1J + ‘r)W5 21-(ws + wg)

= 72 2 + 2 2.3
(GE ¥ IOC)Z [of; + (I +1J + ’t)’g:, i (GE ¥ IGC)
2(1 +1J + x)wm
[o§+(1 +1J + 1)0(2;]3

+

2(I+IJ+1)W5 )

. 21- W4 .\
2 1 2.3
(GE * IOC) [cg + (I +1J + 1)0%] ’
+
J— 6(1 +1J 4 1)W10
A VI
(OE * IOC) {of; + (I +1J + t)og] !
( W2 W4 W5 \
tTo vz et "
o og+loc oE+(I+IJ+t)oC
X
W7 W9 W10
T s2\2 " 2 2.2
(GE) (GE + IGC) [0,2.; + (I +1J + t)cg] 2

\ J



103

2\ 2 2 2\2
(GE) (O’E + Ioc) [0,23 + (I +1J + ‘c)og 2

2.W 7 2.W9 2-W10
+7 2

\ (oE)" ) (0;‘5 + Ics?;)3 ' [oﬁ. +(1 + 1+ r)c?;]a

(W2 W4 W5 ] \

J

( we (1+13+5)Ws )

2 2.2
(GE + IOc) [of: + (I +1J+ ‘C)O%il 2

S WO 2(1 +1J + 1.-)W1o

\+ (og R 103)3 + [og+(1 F1 4 r)o%JU

(B, e

2 1o2 ¢ 2 2
O Op+l0c 0E+(I+IJ+1)GC

I wr w9 W10




104

%o §(o(23, o%) '1]

and,
[a(cf;)] 2
. W1+W2 W3+ W4 W5 +2(WG+W7)
- 22 /.2 2.2 253
(OE) ("E + IGC) [o% + (I +1J + t)og] 2 (GE) :
2 (ws + wgl O W10
tT % 23 T
(CE + IGC) [o% + (I +1J + T}J?{' :
( 2W2 2. W4 2.W5 A
P ke 10lY [ 2]3
(GE) ("E C) [GE + (I +1J + 1)00}
+
6-W7 6-W9 6-W10
T g T .2 124
(GE) (UE + IGC) [c:; + (I +1J + ‘r)o?;J *

([, w2 W4 W5 \1
o og+loc oE+(I+IJ+"c)oC

W7 W9 W10

\ ("f:)z ("g + 103)2} [oﬁ +(I + 1T+ x)cﬁr

)



105

[ W2 W4 W5 o
(622 2+10'22- 2 2|2
("E) (GE C) l:O’E + (I +1J + 'c)oc]

. 2-W7 . 22°W9 . 2:W10
2\3 2 2\ 3
(UE) (GE + IGC) [o% + (I +1J + 1}(2;]3

3

[, W2 W4 W5 \2
TE V2o e 2
O O+ 10c oE+(I+IJ+t)UC

\

W7 W9 W10

\ (033)2 ("g* I°f=)2 [o§+(1 +1 +'c)ogr)

When the column variance mode and the row variance mode are
each at the zero boundary and the error variance mode has positive value,
an approximate value for Expression (5.6) is found in a three step process.
First, Equation (5.7) is applied to Expression (5.6) with respect to the column
variance; second, Equation (5.7) is applied to the function from step 1 with
respect to the row variance; and, third, Equation (5.8) is applied to the
function from step 2 with respect to the error variance.

Step 1: This is the same analysis as performed in step 1 in Section

5.4, with the details presented in Appendix L.1.
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Step 2: Equation (5.7) is applied tog(og, o%) with respect to the row

variance; details are presented in Appendix N.1.
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2 * . e
where o denotes the mode of the error variance. The approximation is

performed numerically, using the following functions which are derived in

Appendix N.2. For the numerator:

5
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The denominator uses the second derivative of the integrand.
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CHAPTER 6
DEMONSTRATION OF THE APPROXIMATION METHODOLOGY

This chapter describes and demonstrates the computer program
written to implement the approximation methodology developed in Chapter
5. Examples using non-informative and informative prior distributions are
given for each of the four types of data sets encountered using the two-way
random effects model. Comparisons between the Bayesian and sampling
theory results are made for the expected value, standard deviation, and
selected probability intervals of the mean of the (J+1) replication of the
microsimulation model. The computer program is described in Section 6.1.
In Section 6.2 the demonstration uses the data set generated by the
Nakamura simulation model with 1000 replications; this is a Type 1 data
set. In Section 6.3 the demonstration uses a data set taken from the first 400
replications of the Nakamura simulation model to demonstrate a Type 2
data set. In Section 6.4 the demonstration uses the transpose of the Type 2
data set as a Type 3 data set. In Section A6.5, the demonstration uses a
generated Type 4 data set. Some general comments about the application of

the LaPlace method to various data sets are made in Section 6.5.

5.1 The / . ion C p
A computer program written in the FORTRAN language calculates

the posterior distribution of the mean of the (J+1)th replication of a

microsimulation model, based upon the analysis developed in Chapter 5.
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The computer program code is given in Appendix O. An outline of the
analysis program is presented in Table 6.1. For comparison purposes, the
program also calculates confidence intervals using sampling theory results

developed in Chapter 3. Comparisons are made between the results
Table 6.1 - Approximation Prog

- Outline
Step Operation

1 enter prior distribution parameters

2 enter sample data

3 calculate variances using sampling theory
FOR POSTERIOR STANDARD DEVIATION

FOR NUMERATOR
4 find mode
5 determine type
6 calculate estimated value
FOR DENOMINATOR
7 find mode
8 determine type
9 calculate estimated value
10 calculate estimated standard deviation
FOR POSTERIOR DISTRIBUTION
AT POSTERIOR MEAN
1 find mode
12 determine type
13 calculate estimated value
LOOP THROUGH UPPER HALF OF DISTRIBUTION
14 calculate deviation from mean
15 find mode
16 determine type
17 calculate estimated value
18 assign same value to symmetric deviation below mean
END LOOP
19 normalize to proper probability distribution

2 find selected Bayesian HPD credible sets
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from the Bayesian and sampling theory approaches numerically and
graphically by calculating the corresponding expected values, standard
deviations, and selected probability intervals, as well as by displaying the
analogous distributions.

In step 1 of the program, the user is queried for the values of the
parameters of the prior distributions. This operation is performed in the
first part of subroutine INPUTS. The user has the option of specifying non-
informative priors, or specifying a numerical value for a parameter if
using informative priors, for any of the parameters. The variable
GAMMAC() is used as the inverse of the beta parameter for each of the three
variances; for non-informative prior on a variance, GAMMAC() is set equal
to zero, since the non-informative value of the beta parameter is infinity.

In step 2, the sample data from the microsimulation experiment is
entered; this operation is performed in the second part of subroutine

INPUTS. The user has the option of directly entering the values of the
sample sufficient statistics in the form {I, J, ¥, SSR, SSC, SSE}, or having

the values of the sample sufficient statistics read from a file in the form

o i)

=l J=l i=l =l =l |j=1 1l {i=1

Appendix P contains a listing of the FORTRAN program which calculates
this set of sufficient statistics from an IxJ matrix of values from the
experiment. After the entry of the sample data, the values of the common
exponents, given in Table 5.1, are calculated.

In step 3, the estimates of the variances using the method-of-

moments are calculated, following Equations (3.8) to (3.10). This operation
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is performed in subroutine SMPDAT. If the row or column variance
estimate has a negative value, that variance estimate is set equal to 0. The
method-of-moments expected value of the mean of the (J+1)th replication is
equal to the sample average, ¥.. The standard deviation of the mean of the
(J+1)th replication is calculated as the square root of the variance given in
Equation (3.7), which is equivalent to using the variance from either
Equations (3.11) to (3.14) depending on the negativity of the row and/or
column variance estimates.

The posterior standard deviation of the mean of the (J+1)th replication
is calculated in steps 4 through 10. This operation is performed in
subroutine MOMNTS. The numerator of the posterior variance is
calculated in steps 4 through 6; and the denominator of the posterior
variance is calculated in steps 7 through 9. The standard deviation is
calculated in step 10. The procedure for calculating the numerator of the
posterior variance is the first application of the LaPlace method; similar
procedures are used in steps 7 through 8 for the denominator of the
posterior variance and in steps 11 through 13 and 15 through 17 for the
posterior distribution, with minor modifications accomplished by changing
the exponent values as given in Table 5.2. The procedure for steps 4
through 7 is explained in detail; while the detail is not given for the
procedures for the similar, subsequent steps.

In step 4, subroutine DBCOAH, from IMSL, Inc. (1987a), is used to
find the mode of the numerator of the posterior variance, given in Equation
(5.5), omitting the constant term (IJ + 1) which will be included in step 10.
The right side of Equation (5.5) is expressed as the general function of
integrands given in Expression (5.6) using the appropriate exponent values

as given in Tables 5.1 and 6.2. Subroutine DBCOAH is restricted to optimize
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over the nonnegative portion of ®". Since subroutine DBCOAH finds the

value that minimizes an n-dimensional user-supplied objective function,
the log of the inverse of Expression (5.6), lo g(c;zz, og,cg)'l], is used as the

objective function for subroutine DBCOAH,; this objective function is written
in subroutine LFNC]1, with n = 3. In addition to the objective function,
subroutine DBCOAH also requires user-supplied subroutines which
contain the gradient vector of first derivatives of the objective function and
the HESSIAN matrix of second derivatives of the objective function; these
are written in subroutines GRAD1 and HESS1. The method-of-moments
estimates for the variances, with a value of zero used for each variance
estimate that is negative, are used as the starting points of the search in
subroutine DBCOAH. Output from subroutine DBCOAH consists of the
minimum value of the objective function, and the n-tuple set of points
which minimizes the objective function. These points are the maximum
likelihood estimates of the variances for the function given in Equation (5.5).
In step 5, the data set type is determined based upon the values of the
variance estimates and the criteria given in Table §.3. The output from
subroutine DBCOAH provides the values of the row, column and error
variances which optimize the objective function, defined over the entire %3
space; these values are the numerical estimates of the posterior modes for
the respective variances. If the row and column variances are positive, the
data set is Type 1; if the row variance is positive and the column variance is
negative, the data set is Type 2; if the row variance is negative and the
column variance is positive, the data set is Type 3; and if the row and
column variances are negative, the data set is Type 4. If the data set is Type

1, program control remains in subroutine MOMNTS for step 6; if the data
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set is not Type 1, program control passes to subroutine ESTIM2, ESTIM3 or
ESTIM4 for step 6 depending on the data set type. The positive estimate(s) of
the variance(s) are passed to the respective ESTIM: subroutine for use as
the starting point(s) of the search.

In step 6, if the data set is Type 1, the minimum value of the objective
function is currently available as one of the outputs from subroutine
DBCOAH; subroutine HESS1 calculates the Hessian matrix. These values
are used to calculate the log of the right side of Equation (5.10).

If the data set is Type 2, subroutine ESTIMZ2 performs a procedure
similar to step 4. Subroutine DBCOAH is used with n = 2 to optimize over

the row and error variances using subroutines LFNC2, GRAD2, and HESS2
which reflect the objective function given in Equation (5.11), lo §(0§, of;) 'l],

and an output value is the minimum value of the objective function.
Subroutine HESS2 calculates the Hessian matrix. These values are used to
calculate the log of the right side of Equation (5.12).

If the data set is Type 3, subroutine ESTIM3 performs a procedure
similar to step 4. Subroutine DBCOAH is used with n = 2 to optimize over
the column and error variances using subroutines LFNC3, GRAD3, and

HESS3 which reflect the objective function given in Equation (5.13),
lo, §(o€, of;)'l], and an output value is the minimum value of the objective

function. Subroutine HESS3 calculates the Hessian matrix. These values
are used to calculate the log of the right side of Equation (5.14).

If the data set is Type 4, subroutine ESTIM4 performs a procedure
similar to step 4. Subroutine DBCOAH is used with n = 1 to optimize over
the error variance using subroutines LFNC4, GRAD4, and HESS4 which
reflect the objective function given in Equation (5.15), log{z'(of;) 'l], and an
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output value is the minimum value of the objective function. Subroutine
HESS4 calculates the second derivative. These values are used to calculate
the log of the right side of Equation (5.16).

The procedure in steps 7 through 9 to calculate the denominator of
the variance is performed similarly to steps 4 through 6 with the
appropriate changes in the values of the exponents as given in Table 5.2.

In step 10, the posterior standard deviation is calculated from the
function of the numerator of the variance calculated in step 6, the function
of the deneminator of the variance calculated in step 9 and the constant
term from the numerator of the variance (IJ + 7).

A discrete set of values which approximate the posterior distribution
of the mean of the (J + 1)™ replication is calculated in steps 11 through 19.
This operation is performed in subroutine ESTMAT. Steps 11 through 13
calculate the value of the posterior density function at the posterior mean,
using the procedure from steps 4 through 7 with the appropriate changes in
the values of the exponents as given in Table 5.2. The value of W10 equals
zero when X equals the posterior mean. The method-of-moments estimates
for the variances, with a value of zero used for each variance estimate that
is negative, are used as the starting points for the search. In order to avoid
underflow errors which may occur when calculating the posterior density
at points in the tail of the distribution, that is, at points that are a large
number of standard deviations from the mean, the value of the posterior
distribution at the mean is scaled to a value equal to 1 and the posterior
distribution at points away from the mean are multiplied by the same
scaling constant. The program variable CHUNK is used as the scaling

constant. CHUNK is set equal to the log of the LaPlace approximation
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calculated in step 13, which is the log of the right side of Equation (5.10),
(5.12), (5.14), or (5.16) depending on the data set type.

The posterior density is calculated at other points on the axis in a
program loop for steps 14 through 18. In general, the model user may
specify the set of points at which the posterior distribution is estimated by
specifying the number of such points and the interval which contains them.
In this program, the loop is repeated 100 times, with the posterior density
being calculated for evenly spaced points on the axis starting at the mean
and up to five standard deviations above the mean. In step 14, the squared
term of W10 is set equal to the square of the loop index number of posterior
standard deviations, and the point on the axis is calculated as the loop
index number of posterior standard deviations above the mean. In steps 15
through 17 the value of the posterior distribution is calculated (similar to
the procedure in steps 4 through 7), with the scaling of the result by the
variable CHUNK included; the starting points for the search performed by
subroutine DBCOAH on each pass through the loop are the output values
which optimized the objective function from the previous pass through the
loop . In step 18 the posterior density value from step 17 is assigned to the
point on the axis symmetrically below the posterior mean.

The result from steps 11 through 18 is a discrete set of 201 pairs of
values for the posterior density and the corresponding point on the axis. In
step 19 the valueé of the posterior density are rescaled so that their sum
equals 1; this operation is performed in subroutine NRMLIZ. There are
three reasons why rescaling is necessary: (1) the use of a discrete set of
points to approximate a continuous density, a problem that is not unique to
the LaPlace approximation methodology; (2) the omission of the

denominator of Equation (5.1) from the calculation of the posterior density
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function value; and, (3) the use of the program variable CHUNK to scale
values to avoid underflow errors.

In step 20, the lower and upper endpoints for five selected Bayesian
HPD credible sets are calculated; this operation is performed in subroutine
PRCNTL. The endpoints are determined by calculating the cumulative
mass function for each point on the axis and matching the appropriate
percentile values for the interval endpoints with the corresponding axis
values.

The program subroutines dealing with the calculations for the
sampling theory distribution and intervals are not included in Table 6.1. In
Section 3.3, the sampling distribution is shown to be based on the Student's-
t distribution with degrees of freedom equal to (I-1)XJ-1). For convenience,
since the examples used here have large degrees of freedom, the standard
normal distribution is used instead of the Student's-¢ distribution. The
sampling theory intervals are calculated using the sampling theory mean
and standard deviation and the appropriate percentile values from the
standard normal table. The sampling theory distribution is approximated
by calculating the normal probability density at an appropriate set of values
on the axis, and then normalizing to a proper discrete probability mass
function.

A few words of caution about the presentation of the sampling theory
results are in order. The sampling theory intervals and distributions are
presented in these forms so that they are analogous in form to the Bayesian
theory results for direct comparisons, although they are not analogous in
interpretation. The sampling theory intervals are the traditional
confidence intervals, with their interpretation based upon the long-run

relative frequency of random sample intervals which include the unknown,



but fixed, parameter value. The sampling theory distributions are not true
probability distributions, but represent a graphic depiction of the set of all

sampling confidence intervals.
6.2 Nakamura Model Data Set, 1000 Replications: Type 1 Example

6.2.1 Data set description

In this section, the methodology is applied to the output data from the
Nakamura simulation model of the labor force participation of married
women. The output from the model for each replication is a vector
consisting of the annual income for each wife. There are 1124 wives in the
model; the model is replicated 1000 times. The mean annual income of all
wives for an unobserved replication of the model is the variable of interest.
The sample descriptive statistics are displayed in Table 6.2; the method-of-
moments estimates for the variances are displayed in Table 6.3. This is a
Type 1 situation, the modes of all three variance components have positive

values.

Statistic Value Statistic Value
I 1124 MSR 31361945751.28
J 1000 MSC 252962953.84
y. 4694.98 MSE 246991805.41
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Table 6.3
Method-of-Moments

Variance Value
Row 31114953.95
Column 5312.41
Error 24699180541

6.2.2 Using non-informative Priors

The non-informative prior parameters for the two-way random
effects model are displayed in Table 6.4; these values are also used in the
non-informative priors analysis in sections 6.3.2, 6.4.2, and 6.5.2.

Table 6.4 - Prior Distribution Parameter Values

Parameter Value Parameter Value
B 0.00 O 0.00
T 0.00 Pe oo
g 0.00 Og 0.00
Br hnd B15; had

Table 6.5 displays the means and standard deviations from the
Bayesian and sampling theory/frequentist analyses. Table 6.6 displays the
comparable intervals. Figure 6.1 displays the graphs of the comparable
distributions.

The values of the means are the same for the different analyses. The
Bayesian standard deviation is smaller than the frequentist standard

deviation, resulting in narrower intervals.



Table 6.5 - Comparable Descriptive Statistics

Bayesian | Frequentist
mean 4694.98 4694.98
std.dev. 175.46 182.26
Table 6.6 - Comparable Intervals
Bayesian Frequentist
Lower Upper (1-a) Lower Upper
4579.13 4810.83 50% 4572.14 4817.83
4490.02 4899.95 75% 4485.38 4904.59
4409.81 4980.15 90% 4395.16 4994.81
4347.43 5042.53 95% 4337.75 5052.22
4240.49 5149.47 99% 422547 5164.49
“<<—— Bayesian

|

Frequentist

} 4 4
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3800 4000 4200 4400 4600 4800 5000 5200 5400 5600
Mean Annual Income of New Replication

Figure 6.1 - Comparable Distributions



6.2.3 Using informative priors

The prior parameters for the informative analysis are displayed in
Table 6.7. These values of the prior parameters are used to emphasize the
difference between the resulting distributions.

Table 6.7 - Prior Distnnbution Parameter Values

Parameter Value Parameter Value
v 4000.00 0 4.00
1 100000.00 Be 0.0008
ag 12.00 o 2.50
Br 0.0001 Be 0.005

The sample descriptive statistics and method-of-moments estimates
of variances are the same as for the non-informative analysis, as displayed
in Tables 6.2 and 6.3. Table 6.8 displays the comparable means and
standard deviations; and Table 6.9 displays the comparable intervals.
Figure 6.2 displays the graphs of the comparable distributions.

The sampling theory results are the same here as for the non-
informative analysis of the previous section. The Bayesian mean is a
weighted average of the sample mean and prior mean; the Bayesian
standard deviation is less than the frequentist standard deviation, and less

than the standard deviation from the non-informative analysis.

Table 6.8 - Comparable Descriptive Statistics
Bayesian Frequentist
mean 4638.20 4694.98
std.dev. 168.49 182.26




‘ Table 6.9 - Comparable Intervals

Bayesian Frequentist
Lower Upper (1-) Lower Upper
4526.78 4749.63 50% 4572.14 4817.83
4441.07 4835.34 75% 4485.38 4904.59
4363.93 491248 90% 4395.16 4994 81
4303.93 497248 95% 4337.75 5052.22
4201.07 5075.33 99% 422547 5164.49

Bayesian

< Frequentist

3800 4000 4200 4400 4600 4800 5000 5200 5400 5600
Mean Annual Income of New Replication

Figure 6.2 - Comparable Distributions
6.3 _ Nakamura Model Data Set, 400 Replications: Type 2 Example

6.3.1 Data set description

In this section, the methodology is applied to the first 400 replications
of the Nakamura model. This data set is used to demonstrate the

methodology for a Type 2 situation, where the mode of the column variance
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occurs at the zero boundary. The sample descriptive statistics are displayed
in Table 6.10. The method-of-moments estimates for the variances are

displayed in Table 6.11; note the negative value for the column variance

estimate.

Statistic Value Statistic Value

I 1124 MSR 12347959155.68

J 400 MSC 226359015.06

y. 4662.97 MSE 231644954.28
Table 6.11

Method-of-Moments
Estimates of Variances

Variance Value
Row 30290785.50
Column -4702.79

Error 231644954.28

6.3.2 Using non-informative Priors

The prior parameters for this analysis are displayed in Table 6.4.
Table 6.12 displays the comparable means and standard deviations; and
Table 6.13 displays the comparable intervals. Figure 6.3 shows the graphs
of the comparable distributions.

The means have the same values. The Bayesian standard deviation
is smaller than the frequentist standard deviation, resulting in narrower

intervals.



Table 6.12 - Comparable Descriptive Statistics

Bayesian Frequentist
mean 4662.97 4662.97
std.dev. 104.34 165.72

Table 6.13 - Comparable Intervals

Bayesian Frequentist
Lower Upper (1-o0) Lower Upper
4603.69 4722.25 50% 4551.28 4774.67
4549.80 4776.15 75% 447239 4853.55
4490.52 483543 90% 4390.36 4935.59
444741 4878.54 95% 4338.15 4987.79
4355.79 4970.15 99% 4236.07 5089.88

<——— Bayesian

<— Frequentist

/

4000 4200 4400 4600 4800 5000 5200 5400
Mean Annual Income of New Replication

Figure 6.3 - Comparable Distributions



6.3.3 Using informative priors

Since the same simulation model is used here as in Section 6.2.3, the
same values for the prior distribution parameters are used, as displayed in
Table 6.7.

Table 6.14 shows the comparable means and standard deviations;
and Table 6.15 shows the comparable intervals. Figure 6.4 shows the
graphs of the comparable distributions.

The frequentist results are the same here as for the non-informative
analysis. The Bayesian mean is a weighted average of the sample mean
and prior mean. The Bayesian standard deviation is smaller than the
frequentist standard deviation, resulting in narrower intervals. But, the
Bayesian standard deviation here is larger than the Bayesian standard

deviation from the non-informative analysis, as displayed in Table 6.12.

Table 6.14 . Comparable Descriptive Statistics

Bayesian Frequentist
mean 4542.34 4662.97
std.dev. 107.21 165.72

Table 6.15 - Comparable Intervals

Bayesian Frequentist
Lower Upper (1-a) Lower Upper
4475.71 4608.98 50% 4551.28 4774.67
4424 45 4660.24 75% 447239 4853.55
4368.06 4716.63 90% 4390.36 4935.59
4327.06 4757.63 95% 4338.15 4987.79

4239.92 4844.77 99% 4236.07 5089.88
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Figure 6.4 - Comparable Distributions

6.4.1 Data set description

In this section, the methodology is applied to the output data set from
the first 400 replications of the Nakamura model. In order to obtain a Type
3 situation, the rows and columns are transposed; consequently, the
variable of interest is the mean annual income over all replications for a
randomly selected wife. (The reader is cautioned that this data set is being
used in this manner only to demonstrate the approximation methodology
when the row variance mode is at the zero boundary. This analysis does
not adequately account for the proportion of wives in each replication who

do not work; consequently, the large standard deviation results in a



posterior distribution which gives a probability of negative earnings which
is unrealistically high.)

Table 6.16 presents the sample descriptive statistics for this data set;
the method-of-moments estimates for the variances are displayed in Table

6.17, note the negative value for the row variance estimate.

Table 6.16 - Samgle Descrigtive Statistics

Statistic Value Statistic Value
I 400 MSR 226359015.06
J 1124 MSC 12347959155.68
y. 4662.97 MSE 231644954.28
Table 6.17

Method-of-Moments
Estimates of Variances

Variance Value

Row - 4702.79
Column 30290785.50
Error 231644954.28

6.4.2 Using non-informative Priors

The prior parameters for this analysis are presented in Table 6.4.
Table 6.18 displays comparable means and standard deviations; and Table
6.19 displays comparable intervals. Figure 6.5 displays the graphs of the
comparable distributions.

The means have the same value. The Bayesian standard deviation is
larger than the frequentist standard deviation, resulting in wider intervals.

But, since the difference in standard deviations is relatively small, the
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graphs of the distributions are not distinguishable given the resolution of

the graphics device used here.

Table 6.18 - Comgarab]e Descrigtive Statistics

Bayesian Frequentist
mean 466297 466297
std.dev. 5508.69 5506.20

Table 6.19 - Comparable Intervals

Bayesian Frequentist
Lower Upper (1-0) Lower Upper
1082.28 8243.66 50% 951.79 8374.15
-1672.09 10998.04 75% - 1669.16 10995.10
-4426.47 1375241 90% -4394.73 13720.68
-6079.09 15405.04 95% -6129.18 15455.13
- 9659.79 18985.73 99% - 9521.00 18846.95

6.4.3 Using informative priors

The prior parameters for this analysis are displayed in Table 6.20.
Except for interchanging the row and column parameters to reflect the
transposition of the rows and columns in the data set, the values of the
prior parameters are the same as for the analysis in Section 6.2.3.

Table 6.20 - Prior Distribution Parameter Values

Parameter Value Parameter Value
H 4000.00 Oc 12.00
1 100000.00 Be 0.0001
ag 4.00 Og 2.50

Br 0.0008 Be 0.005
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Figure 6.5 - Comparable Distributions

Table 6.21 displays the comparable means and standard deviations;
and Table 6.22 displays the comparable intervals. Figure 6.6 displays the
graphs of the comparable distributions.

The sampling theory results are the same as for the non-informative
analysis of the previous section. The Bayesian mean is a weighted average
of the sample mean and prior mean; the difference in the means is small
compared to the magnitude of the standard deviations, so the difference in
locations for the graphs of the distributions is barely distinguishable in
Figure 6.6. The Bayesian standard deviation is smaller than the frequentist
standard deviation, resulting in narrower intervals. Since the difference in
the standard deviations is relatively small, the graphs of the distributions

are not distinguishable given the resolution of the graphics device used.



Table 6.21 - Comgarable Descrigtive Statistics

Bayesian Frequentist
mean 4542.34 4662.97
std.dev. 5457.33 5506.20

Table 6.22 - Comparable Intervals

Bayesian Frequentist
Lower Upper (1-a) Lower Upper
995.02 8089.66 50% 951.79 8374.15
-1733.68 10818.37 75% - 1669.16 10995.10
- 4462.39 13547.08 90% -4394.73 13720.68
- 6099.61 15184.30 95% -6129.18 15455.13
- 9646.93 18731.62 99% - 9521.00 18846.95
-20000 -10000 0 10000 2;)00 30;)00
Mean Annual Income of New Wife

Figure 6.6 - Comparable Distributions



65 Type 4 Example

In this section, the methodology is applied to a sample data set which
was chosen to achieve a Type 4 situation. The sample descriptive statistics
are displayed in Table 6.23; the method-of-moments estimates for the
variances are displayed in Table 6.24. Note the negative values for the row

and column variance estimates.

_Lable 6.23 - Sample Descriptive Statistics ____
Statistic Value Statistic Value
I 1000 MSR 0.00501
J 12000 MSC 0.00075
y. 0.00 MSE 102992223910
Table 6.24

Method-of-Moments
Estimates of Variances

Variance Value
Row - 85.8269

Column - 1029.9222
Error 1029922.2391

The non-informative prior parameters for this analysis are presented
in Table 6.4. Figure 6.7 displays the graph of the Bayesian posterior
distribution. The approximation analysis does not work properly in this
situation, as evidenced by the U shape for the posterior distribution. This
distribution shape is typical of other examples for a Type 4 data set
generated for this work, whether using informative or non-informative

prior distributions.
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Figure 6.7 - Bayesian Posterior Distribution
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In this section, some general comments are made reflecting the
experiences of working with the approximation program. While the
approximation methodology works for the data sets used in Sections 6.2
through 6.4, it does not work for all situations. First, problems encountered
with various data sets are discussed. Then, some effects of different sample
sizes are discussed.

The conditions for which the LaPlace approximation for integrals is
applicable are described in detail in Kass, Tierney and Kadane (1990). One
of the conditions is that the determinant of the Hessian matrix have positive
value, since its square root is used in the denominator. Experience with the
Nakamura model output, and arbitrary data sets generated from the two-

way random effects model, shows that is not always the case for the three



functions used in this analysis, as given in Section 5.1.2 and Expression
(5.6) in general. For example, when approximating the integral in the
denominator of the variance using the sample data from the first 10
replications of the Nakamura model and diffuse priors the determinant of
the Hessian matrix has a negative value.

Another problem encountered which causes the approximation
methodology to break down is the occurrence of negative values for the
arguments of the logarithms in the resulting integrand after having been
approximated using Result (5.7) for situations with the row and/or column
variance mode at the zero boundary. This can occur in Types 2, 3, or 4
situations, in the numerators of Equations (5.12), (5.14), or (5.16),
respectively. For example, when evaluating the posterior distribution at the
posterior mean using the sample data from the first 500 replications of the
Nakamura model and diffuse priors results in a negative value for the
argument of the logarithm function.

The problems described above are not attributable solely to sample
size, since the approximation methodclogy can work for small sample
sizes. The LaPlace method for integral approximation is based upon
asymptotic arguments, as the value ¢t — «, see Sections 5.2.2, 5.2.3 and
5.2.4. In the two-way random effects model application, this condition
corresponds to having I — « and J — < at the same time. It is not merely
the sample size which determines whether or not the approximation
works, but the entire data set configuration, meaning the sample
descriptive statistics and prior parameter values taken together. In terms
of the general function for the integrands described in Section 5.1.3, the
values of the exponents W1 through W10 are determinative of the success of

the approximation.



For an example of an application using a small sample, the
methodology is applied to the data set taken from Table 6.2.3, "Average
mileage for 9 drivers on 9 cars", Box and Tiao (1973, p. 336). The mean fuel
economy (mpg) over all cars for a randomly selected driver is the variable of
interest. The descriptive statistics for this sample data set are presented in
Table 6.25; the method-of-moments estimates for the variances are

displayed in Table 6.26.

Table 6.25 - _Sample Descriptive Statistics _

Statistic Value Statistic Value
I 9 MSR 63.23
J 9 MSC 22.63
y 27.72 MSE 0.86
Table 6.26

Method-of-Moments
Estimates of Variances

Variance Value
Row 6.93
Column 242
Error 0.86

The non-informative prior parameters for this analysis are presented
in Table 6.4. Table 6.27 shows comparable means and standard deviations;

and Figure 6.8 shows the graphs of the comparable distributions.

Table 6.27 - Comgarab]e Descrigtive Statistics

Bayesian Frequentist

mean 27.72 27.72
std.dev. 2.06 1.86




Sample size does influence the behavior of the approximations since
as sample size increases the modes of the variances tend to stabilize, in the
sense that they stay at the same set of values for more of the evaluations. In
each analysis, the approximation is performed 103 times: once each for the
variance numerator, variance denominator, and posterior distribution
evaluated at the posterior mean; and for the posterior distribution evaluated

at 100 points evenly spaced over 5 standard deviations above the

Frequentist

Bayesian

18 20 22 24 26 28 30 32 34 36
Mean MPG of New Driver

Figure 6.8 - Comparable Distributions
mean. Due to the symmetry of the distribution, the value of the function at
a point below the mean is set equal to the value of the function at the
corresponding point above the mean, rather than again performing the
approximation. For the Box and Tiao data set just described, a different set
of modes occurs for each of the 103 approximations. Using the first 10
replications of the Nakamura model data set with non-informative priors, 5

different sets of modes occur: one set of modes occurs for the variance
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numerator and denominator approximations, another set of modes occurs
for the posterior distribution at the posterior mean through the 46th point
above the mean, and different sets of modes for the 47th through 66th points,
67th thorough 8374 points, and 84th through 100th points. And, using the 1000
replications of the Nakamura model data set as described in Section 6.2.2
the same set of modes occurs for all 103 approximations.

The effect of different sets of modes occurring for the successive
approximations may or may not be apparent in the resulting posterior
distributions. For example, the graph of the Bayesian posterior distribution
for the Box and Tiao data set in Figure 6.8 appears quite smooth even
though each approximation uses a different set of modes. Contrast the
posterior distribution using the first 10 replications of the Nakamura model
with non-informative priors, shown in Figure 6.9. Careful inspection of the
upper tail reveals two jumps in the distribution. These jumps occur at the
67th and 84th points, where the sets of modes change, but no discernible
jump oécurs at the 47th point where another change in the set of modes
occurs. An enlarged display of part of the upper tail is presented in Figure
6.10; the diamonds represent the discrete set of approximations to the
continuous posterior distribution. The jumps in the posterior distribution
corresponding to the changes in the sets of modes at the 67th and 84th points

are more apparent in this figure than in the earlier figure.
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CHAPTER 7
CONCLUSIONS AND EXTENSIONS

1 nclusion

This work explores the use of a two-way random effects model as an
appropriate metamodel for microsimulation output analysis. Comparisons
between sampling theory and Bayesian predictive distributions for the
mean of an unobserved replication of the simulation model are made, using
as examples output from a simulation model of the labor force participation
and incomes of wives based on Nakamura and Nakamura (1985a).

This work explains how the use of a metamodel enhances the
analysis of output from a microsimulation model. The two-way random
effects model is an appropriate metamodel for many uses of
microsimulation models. The output of the microsimulation model,
consisting of measurements on the dependent variable for each decision
unit over a number of independent replications, is matched by the structure
of the two-way random effects model. The use of this metamodel permits
the inherent variability of microsimulation models to be identified,
separated and investigated. Using this metamodel to make predictive
inference about the mean response of an unobserved replication of the
microsimulation model focuses the attention of the model user on an
appropriate measure matching the behavior of the real system being

studied.
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This work demonstrates the advantages of Bayesian analysis over
sampling theory analysis since the former permits the incorporation of the
model user's experience and knowledge into the analysis and provides a
coherent method of dealing with sample data which results in negative
estimated values for model variance parameters which by definition may
only assume positive values.

The difficulty encountered in Bayesian analysis of intractable
integrations over nuisance parameters is addressed by using LaPlace's
method of integral approximation. While the analytic-numeric
approximations developed in this work using LaPlace's method may not be
applicable to all problem sets, they are shown to be useful for
approximating the predictive distribution of the mean of an unobserved
replication of the Nakamura microsimulation model for the large number

of replications used here.
12 Extensions

There are a number of directions in which future research can go;
the variety of topics include the areas of economics, simulation, statistics,
and mathematics.

With simulation models of income for economic units, model users
may be interested in a number of other descriptive measures of the
distribution of incomes. This work explored the posterior distribution of the
mean of an unobserved replication of the model, as a proxy for the mean of
the simulated world in an unobserved setting, that is, in the future or
under some other set of operating characteristics. Other descriptive

measures of income distributions may include percentiles, proportions, or

more complex measures such as the Lorenz curve or its Gini coefficient.
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Other metamodels may be needed for the analyses when interest is on other
measures of system performance, or when other probability distributions
are more appropriate than the normal distribution for describing system
behavior.

Percentiles of the distribution of incomes describe the income level of
certain groups of the population when the members are ranked by income.
The model user specifies the percentage groupings of the population, and
the dependent variable is the dollar value for which that percent of the
population has income at or below. Some examples which may be of
particular interest are the median, a univariate measure, or the first and
fourth quintiles, the 20th and 80th percentiles, multivariate measures. The
posterior distribution of percentiles is based on the order statistics; a
Bayesian analysis for simulation output analysis may be based on the work
of Hill (1968).

Proportions of the population which have income in various classes
may be of interest to the model user. The user specifies the class
boundaries of interest, and the dependent variable is proportion of the
population in each category. If a single income level is specified, such as a
poverty level, then the analysis is based upon the binomial distribution. If
two or more income classes are specified, then the analysis is multivariate.
The articles by Leonard (1972, 1975) and Lenk (1990) may provide a starting
point for these analyses. Andrews, Birdsall, Gentner, and Spivey (1986)
addressed the trinomial distribution with categories of incomes below
$25,000, from $25,000 to $50,000, and above $50,000.

The Lorenz curve is a description of the income distribution based on
quantile-quantile plots. When the population elements are ranked on

wealth, the curve depicts the proportion of cumulative wealth owned by the
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cumulative proportion of the population. The Gini coefficient is a
numerical description of the discrepancy between the Lorenz curve for a
given wealth distribution and the curve resulting from an equal
distribution of wealth.

Other multivariate measures of income which may be of interest to
model users include the joint distribution of the mean and standard
deviation of income, or the joint distribution of the mean of incomes for
those employed and the proportion of unemployed.

An issue of major concern to the simulation modeler as well as the
model user is model validation; Andrews, et al. (1986) addressed the
validation of microsimulation models. For microsimulation models, an
appropriate validation technique is ex post forecasting. This method uses a
sequence of historic data, split at some time point in the past. The data
prior to the break point is used to estimate the coefficient values for the
model. Then, the simulation model is replicated forward in time from the
break point and the model output compared to the historic data for the
corresponding time periods. The validation question then is to describe the
difference in the inference one makes using the simulation replications
from the inference one makes using the historic data.

The decision unit sample design determines the analysis
methodology. The two-way random effects metamodel and the
corresponding sampling theory and Bayesian predictive intervals
developed in this work assumed the decision unit was a simple random
sample; this is why the SRC subsample from the PSID was used rather
than the entire PSID sample. Andrews, et al. (1986) addressed the complex
sample design issue, in particular dealing with the stratified, paired-

cluster design of the full PSID.
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The metamodel in this work assumes that the error terms are
independent over all decision units and replications. In other simulation
models, such as those of queuing systems, there is dependency among the
model units within a replication. Such dependency may be modeled by
using error terms which are correlated within each replication. The two-
way random effects model with error terms correlated within a replication
and independent across replications may be an appropriate metamodel for
a terminating condition queuing system, with multiple observations of the
system obtained by the method of replications. Tiao and Tan (1966)
addresses the effect of autocorrelated errors in the random effects models.

Issues concerning the approximation of the intractable integrals
arising in the Bayesian predictive distribution analysis for the mean of the
(J+1)th replication need furth.er investigation. In describing the regularity
conditions sufficient for validity of the LaPlace approximation, Kass,
Tierney and Kadane (1990) do not establish a general theorem, but intend
that the regularity conditions "be verified for interesting special families as
the need arises in practice." The issues, then, are what the regularity
conditions imply about the data configuration, that is, the sample data and
prior parameter values, such that the LaPlace approximations will be valid
for the two-way random effects metamodel for microsimulation models.
An alternative methodology which may prove useful for the problems
discussed in this work is the use of Gibbs sampling; this methodology
would be used, in lieu of the LaPlace methods described in Sections 5.3
through 5.6, to obtain the predictive distribution, from Equation (4.13).

From the array of available topics, the development of Gibbs
sampling procedures will be the first topic investigated, followed by an

investigation of the validation of microsimulation models.
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APPENDIX A
COMPUTER COMMAND SEQUENCES

This appendix lists computer command sequences used in the

processing of data from the PSID tapes.

A1 C 1S for Extractine Decision Unit Sample From PSID

Tapes

~J U W N

o

10
11
12
13
14

15
16
17
18
19

20
21

22

23

Smount

157-1isp-167 *t1%*

157-cusp-167 *t2*

Sendfile

$run isr:osiris.iv

&trans dictin=*tl*(fi=1) datain=*tl*+*t2*(fi=2) -
dictout=-dict dataout=-data

include v5336=0001~3000 and v5852=29-63 and v5650=1 -
and v6219=1 and v6812=1

title

v=5203,5353,5703,5743,5788,58525854,6116,6123,6174, -
6209,6302,6348,6398,6767

&end

&stop

Screate psiddata type=seq

$run stat:midas

osiris var=all max=1802 case=all fi=-dict;-data &
option=none

write internal v=all fi=psiddata

code vl=cuts(v6116) points=,99, lab=*

code v2=cuts(v6123) points=,99, lab=*

trans v6303=v6302(-1) lab=lag79id

trans v6303=replace(l.) lab=*

trans v6304=v6302:v6303 lab=*

code v6305=0ordinal(v6304) lab=*

write internal special fi=psiddata &
cases=v1:1*v2:1*v6305:1 &
var=5203,5353,5703,5743,5788,5852-5854, 6116, 6123, &
6174,6209,6348,6398,6767

finish
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$create seeddata

$Srun stat:midas

read internal v=all fi=psiddata

write file=seeddata format=(il,8i2,1i4,1i5,2i6) case=all
var=6209, 5203,5703,5353,5853,5852,5854,6116, 6123,
5743,5788,6174,6767

finish

o]
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APPENDIX B
SIMULATION MODEL PROGRAM

Table B.1 - Input / Qutput Device Designation

# Use Description

1 Input Decision Unit Sample
2 Input / Output PRNG Seeds

3 Output Earnings Vector

5 Input *SOURCE*

6 Output *SINK*

C'kk'k*titi*ii*ttﬁit*t***t*i'kt******************************

O0O0O0000000

[eNeNe!

O0O00000

FORTRAN program to perform simulation of working wives
using DIFFERENCE model in Nakamura, A. and Nakamura, M.
(1985), "Dynamic Models of the Labor Force Behavior of
Married Women Which Can Be Estimated Using Limited
Amounts of Past Information," JOURNAL OF ECONOMETRICS,
27, 273-298.

AARKARAKRAN R A AKRAR KR AR A A AR R AR R A AAARKRRANRRRARKRANAARAAN AR N AR ARN AR

declaration section

INTEGER M2INDX (9),M3INDX(7)
REAL*8 M1BETA(17,4),M1CNST(4),M2BETA (10, 4),M2CNST (4),

& M2STDV (4) ,M3BETA (10, 4) ,M3CNST (4) ,M3STDV (4)
COMMON/MODEL/ M2INDX,M3INDX,M1BETA,MICNST,M2BETA,
& M2CNST,M2STDV,M3BETA,M3CNST, M3STDV

REAL*8 CP177,CPI178,RATE77(51),RATE78(51),WAGE77(51),
& WAGE78 (51)
COMMON/MACRO/ CPI77,CP178,RATE77,RATE78,WAGE77,WAGE78

INTEGER ISEED,NWIVES,WIFE,COL,AGE, I

LOGICAL WORKED, YOUNG

REAL*8 PI,WINDEX(2000),M2DIST(2000),M3DIST(2000),

&X(17),PROBIT, CDF, PDF, LAMBDA, OFWGRT, HRSWRK, WFEARN (2000)
initialize values

PI = DCONST('PI')

CALL MACROV
CALL MODVAL

READ (1, 199) NWIVES

199 FORMAT (I4)

SEED value obtained from, and returned to, file on #3;
vector of values of U(0,1) R.V.s for probability of
working; 2 vectors of values of Standard Normal R.V. for
wage rate and hours predictions;



40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
1
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

Qa0

[eNeNe!

eNeNe] [eNeNe! Q00 OO0

o NeNe
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READ (2,888) ISEED

888 FORMAT (I10)
CALL RNSET (ISEED)
CALL DRNUN (NWIVES, WINDEX)
CALL DRNNOR (NWIVES,M2DIST)
CALL DRNNOR (NWIVES,M3DIST)
CALL RNGET (ISEED)
WRITE (2,888) ISEED

DO 1000 WIFE=1,NWIVES
input section
CALL INDATA (WORKED, YOUNG, X)
determine which column from tables to use

IF {(WORKED) THEN
IF (YOUNG) THEN

CoL =1
ELSE

COL = 2
ENDIF
ELSE

IF (YOUNG) THEN

COL = 3
ELSE

COoL = 4
ENDIF
ENDIF

calculate probit index
PROBIT = M1CNST (COL)
DO 101 I=1,17
101 PROBIT = PROBIT+M1BETA(I,COL)*X(I)
calculate probability of working this year
CDF = DNORDF (PROBIT)

stochastic determination if working this year

IF (CDF.LT.WINDEX(WIFE)) THEN
WFEARN (WIFE) = 0.DO

GO TO 1000

ENDIF

calculate selection bias term

PDF = DEXP (- (PROBIT*PROBIT)/2.D0)/DSQRT(2.D0*PI)
LAMBDA = PDF/CDF

calculate predicted log of offered wage rate
OFWGRT = MZ2CNST(COL)

DO 201 I=1,9
201 OFWGRT = OFWGRT+M2BETA (I,COL) *X (M2INDX(I))
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99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

150

OFWGRT = OFWGRT+M2BETA(10,COL) *LAMBDA
& +M2DIST (WIFE) *M2STDV (COL)

calculate predicted log of annual hours of work

OO0

HRSWRK = M3CNST (COL)+M3BETA (1, COL) *OFWGRT
& +M3BETA (2, COL) *OFWGRT
DO 301 1=3,9
301 HRSWRK = HRSWRK+M3BETA(I,COL) *X (M3INDX(I-2))
HRSWRK = HRSWRK+M3BETA (10, COL) *LAMBDA

& +M3DIST(WIFE) *M3STDV (COL)
o
C calculate earnings
c
IF (WORKED) THEN
OFWGRT = X (2)+OFWGRT
HRSWRK = X (1)+HRSWRK
ENDIF
WEFEARN (WIFE) = DEXP (OFWGRT+HRSWRK)
IF (WFEARN (WIFE) .GT.999999.D0) WFEARN(WIFE)=999995.D0
C
C end loop
Cc
1000 CONTINUE
c
C output earnings
cC

900 WRITE(3,990) (WFEARN(I), I=1,NWIVES)
990 FORMAT (200F7.0)
STOP
END
Cr AR AR AR AR KK R KRR R R KKK KA AR KKK AR R AR AR R KKK AR KA AR K KKK R KKKk

C subroutine to input values of model var's for each wife
Cttttttttt*tt****tt*tt**t**k********************t*********

SUBROQUTINE INDATA (WORKED, YOUNG, X)

C
C declaration section
C
INTEGER AGE, EDUCTN,HEDINC(2),NRKIDS (2),RACE, STATE (2),
& WIFHRS,WIFINC, YRSWRK, YNGEST
LOGICAL WORKED, YOUNG
REAL*8 X(17)
REAL*8 CP177,CPI78,RATE77(51),RATE78(51),WAGE77(51),
& WAGE78(51)
COMMON/MACRO/ CPI77,CP178,RATE77,RATE78, WAGE77,WAGE78
C
READ (1, 999) RACE, STATE,NRKIDS, AGE, YNGEST, EDUCTN,
& YRSWRK, WIFHRS, WIFINC, HEDINC
999 FORMAT(I1,812,14,15,216)
C

IF(AGE.LT.47) THEN
YOUNG = .TRUE.

ELSE

YOUNG = .FALSE.

ENDIF

IF ((WIFHRS.GT.(0) .AND. (WIFINC.GT.Q0)) THEN
WORKED = .TRUE.

ELSE
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157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
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WORKED = .FALSE.

ENDIF
C
IF (WORKED) THEN
X(1) = DLOG(DFLOAT (WIFHRS))
X(2) = DLOG (DFLOAT (WIFINC)/ (CPI77*DFLOAT (WIFHRS)))
ELSE
X(1) = 0.DO
X(2) = 0.D0
ENDIF
X(3) = DFLOAT (YRSWRK)/ (DFLOAT (AGE)-17.D0)
IF (YRSWRK.EQ.0) THEN
X(4) = 1.D0
ELSE
X(4) = 0.D0
ENDIF
IF ((NRKIDS{2).GT.NRKIDS(1)).AND. (YNGEST.EQ.1)) THEN
X(5) = 1.D0
ELSE
X{5) = 0.D0
ENDIF
IF ({(YNGEST.GT.1) .AND. (YNGEST.LT.6)) THEN
X(6) = 1.D0
ELSE
X(6) = 0.DO
ENDIF
X(7) = DFLOAT (NRKIDS(2))
X(8) = DFLOAT (AGE)
X(9) = DFLOAT (EDUCTN)
IF (RACE.EQ.2) THEN
X(10) = 1.D0
ELSE
X(10) = 0.DO
ENDIF
X(11) = DFLOAT(HEDINC(2))/(1000.D0O*CPI78)
X(12) = X(11)-DFLOAT (HEDINC(1))/(1000.DO*CPI77)
IF (X(12).LT.0.D0) THEN
X(13) = X(12)
ELSE
X(13) = 0.DO0
ENDIF
X(14) = WAGE78 (STATE (2))/CPI78
X(15) = X(14)-WAGE77(STATE(1))/CP177
X(16) = RATE78 (STATE(2))
X(17) = X(16)-RATE77(STATE(1l))
o
RETURN
END

Ct*tiittttt*i*ittt*t****i**********t**********************

C subroutine to assign values of macro-economic variables
C from HANDBOOK OF LABOR STATISTICS, Bulletin #2070
C*tttttttt*tt*ttttti**t***********ti*************t********
SUBROUTINE MACROV
C
C declaration section
C
REAL*8 CP177,CPI78,RATE77(51),RATE78(51),WAGE77(51),
& WAGE78 (51)
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214 COMMON/MACRO/ CPI77,CPI78,RATE77,RATE78,WAGE77,WAGE78
215 C

216 C Consumer Price Index (1967% = 100):; source: Table 134
217 (o]

218 CPI177 = 1,815D0
219 CPI78 = 1.954D0
220 C

221 C state unemployment rate, 1977; source: Table 45
222 C

223 RATE77(1) = 7.4D0
224 RATE77(2) = 8.2D0
225 RATE77(3) = 6.6D0
226 RATE77(4) = 8.2D0
227 RATE77(5) = 7.0D0
228 RATE77(6) = 6.2D0
229 RATE77(7) = 8.4D0
230 RATE77(8) = 9.7D0
231 RATE77(9) = 8.2D0
232 RATE77 (10) = 6.9D0
233 RATE77(11) = 5.9D0
234 RATE77(12) = 6.2D0
235 RATE77(13) = 5.7D0
236 RATE77(14) = 4.0D0
237 RATE77(15) = 4.1D0
238 RATE77(16) = 4.7D0
239 RATE77(17) = 7.0D0
240 RATE77(18) = 8.4D0
241 RATE77(19) = 6.1D0
242 RATE77(20) = 8.1D0
243 RATE77(21) = 8.2D0
244 RATE77(22) = 5.1D0
245 RATE77(23) = 7.4D0
246 RATE77(24) = 5.9D0
247 RATE77(25) = 6.4D0
248 RATE77(26) = 3.7D0
249 RATET77(27) = 7.0D0
250 RATE77(28) = 5.9D0
251 RATE77(29) = 9,4D0
252 RATE77(30) = 7.8D0
253 RATE77(31) = 9.1D0
254 RATE77(32) = 5.9D0
255 RATE77(33) = 4.8D0
256 RATE77(34) = 6.5D0
257 RATE77(35) = 5.0D0
258 RATE77(36) = 7.4D0
259 RATE77(37) = 7.7D0
260 RATE77(38) = 8.6D0
261 RATE77(39) = 7.2D0
262 RATE77(40) = 3.3D0
263 RATE77(41) = 6.3D0
264 RATE77(42) = 5.3D0
265 RATE77(43) = 5.3D0
266 RATE77(44) = 7.0D0
267 RATE77(45) = 5.3D0
268 RATE77(46) = 8.8D0
269 RATE77(47) = 7.1D0
270 RATE77(48) = 4.9D0
271 RATE77(49) = 3.6D0



272
273
274
275
276
271
2178
279
280
281
282
283
284
285
286
287
288
289
230
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

C
C
C

c
C

RATE77 (50)
RATE77 (51)

RATE78 (1)

RATE78 (2)

RATE78 (3)

RATE78 (4)

RATE78 (5)

RATE78 (6)

RATE78(7)

RATE78 (8)

RATE78(9)

RATE78 (10)
RATE78 (11)
RATE78 (12)
RATE78 (13)
RATE78 (14)
RATE78 (15)
RATE78(16)
RATE78 (17)
RATE78 (18)
RATE78 (19)
RATE78 (20)
RATE78 (21)
RATE78(22)
RATE78 (23)
RATE78 (24)
RATE78 (25)
RATE78 (26)
RATE78(27)
RATE78 (28)
RATE78 (29)
RATE78 (30)
RATE78 (31)
RATE78 (32)
RATE78 (33)
RATE?78 (34)
RATE78 (35)
RATE78(36)
RATE78 (37)
RATE78 (38)
RATE78 (39)
RATE78 (40)
RATE78 (41)
RATE78 (42)
RATE78 (43)
RATE78 (44)
RATE78 (45)
RATE78 (46)
RATE78(47)
RATE78 (48)
RATE78 (49)
RATE78(50)
RATE78 (51)

state average

BB N
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9.4D0
7.3D0

state unemployment rate, 1978; source: Table 45

.3D0
.1D0
.3D0
.1D0
.2D0
.5D0
.6D0
.5D0
.6D0
5.7D0
5.7D0
6.1D0
5.7D0
4.0D0
3.1D0
5.2D0
7.0D0
6.1D0
5.6D0
6.1D0
6.9D0
3.8D0
7.1D0
5.0D0
6.0D0
2.9D0
4.4D0
3.8D0
7.2D0
5.8D0
7.7D0
4.3D0
4.6D0
5.4D0
3.9D0
6.0D0
6.9D0
6.6D0
5.7D0
3.1D0
5.8D0
4.8D0
3.8D0
5.7D0
5.4D0
6.8D0
6.3D0
5.1D0
3.3p0
11.2D0
7.7D0

o n "N ke N Wk R R E N RN KWK NN RN R

hourly wage in manufacturing, 1977;
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330 C source: Table 97

331 C

332 WAGE77(1) = 4.89D0
333 WAGE77(2) = 5.55D0
334 WAGE77(3) = 4.30D0
335 ' WAGE77(4) = 6.00D0
336 WAGE77(5) = 5.56D0
337 WAGE77(6) = 5.80D0
338 WAGE77(7) = 5.94D0
339 WAGE77(8) = 5.50D0
340 WAGET77(9) = 4.63D0
341 WAGE77(10) = 4.46D0
342 WAGE77(11) = 5.82D0
343 WAGE77(12) = 6.28D0
344 WAGE77(13) = 6.60DO0
345 WAGE77(14) = 6.43D0
346 WAGE?77 (15) = 5.11D0
347 WAGE77(16) = 5.69D0
348 WAGE77(17) = 5.75D0
349 WAGE77(18) = 4.52D0
350 WAGE77(19) = 6.05D0
351 WAGE77(20) = 5.13D0
352 WAGE77(21) = 7.54D0
353 WAGE77 (22) = 5.97D0
354 WAGE77(23) = 4.15D0
355 WAGE?77(24) = 5.75D0
356 WAGET77 (25) = 6.53D0
357 WAGE77 (26) = 5.39D0C
358 WAGE77 (27) = 6,10D0
359 WAGE77 (28) = 4.56D0
360 WAGE77(29) = 5.80D0
361 WAGE77 (30) = 4.43D0
362 WAGE?77(31) = 5.67D0
363 WAGE77(32) = 4.10D0
364 WAGE77 (33) = 5.19D0
365 WAGE77(34) = 6.74D0
366 WAGE77 (35) = 5.31D0
367 WAGE77 (36) = 6.67D0
368 WAGE77 (37) = 5.85D0
369 WAGE?77 (38) 4.39D0
370 WAGE77 (39) = 4.28D0
371 WAGE77 (40) = 4.84D0
372 WAGE77 (41) = 4.68D0
373 WAGE77 (42) = 5.42D0
374 WAGE77 (43) = 5.18D0
375 WAGE77(44) = 4.70D0
376 WAGE77 (45) = 4.69D0
377 WAGE77 (46) = 6.83D0
378 WAGE77 (47) = 6.06D0
379 WAGE77 (48) = 6.16D0
380 WAGE77 (49) = 5.70D0
381 WAGE77 (50) = 9.12DQ
382 WAGE77 (51) = 5,51D0
383 C

384 C state average hourly wage in manufacturing, 1978;
385 C source: Table 97

386 C

387 WAGET78 (1) = 5.40D0



388 WAGE78(2) = 6.03D0
389 WAGE78(3) = 4.72D0
390 WAGE78 (4) = 6.43D0
391 WAGE78 (5) 5.96D0
392 WAGE78(6) = 6.21D0
393 WAGE78(7) = 6.58D0
394 WAGE78(8) = 6.72D0
395 WAGE78(9) = 5.07D0
396 WAGE78 (10) = 4.88D0
397 WAGE78(11) = 6.53D0
398 WAGE78(12) = 6.76D0
399 WAGE78(13) = 7.17D0
400 WAGE78(14) = 7.00D0
401 WAGE78 (15) = 5.64D0
402 WAGE78(16) = 6.26D0
403 WAGE78(17) = 6.42D0
404 WAGE78 (18) = 4.91D0
405 WAGE78(19) = 6.46D0
406 WAGE78 (20) = 5.54D0
407 WAGE78(21) = 8.13D0
408 WAGE78(22) = 6.44D0
409 WAGE78(23) = 4.56D0
410 WAGE78(24) = 6.21D0
411 WAGE78(25) = 7.81DO
412 WAGE78(26) = 5.83D0
413 WAGE78 (27) = 6.54D0
414 WAGE78(28) = 4.93D0
415 WAGE78 (29) = 6.20D0
416 WAGE78(30) = 4.79D0
417 WAGE78(31) = 6.08D0
418 WAGE78(32) = 4.47D0
419 WAGE78(33) = 5.55D0
420 WAGE78 (34) = 7.29D0
421 WAGE78 (35) = 5.81D0
422 WAGE78 (36) = 7.23D0
423 WAGE78 (37) = 6.37D0
424 WAGE78(38) = 4.71D0
425 WAGE78 (39) = 4.66D0
426 WAGE78(40) = 5.19D0
427 WAGE78(41) = 5.13D0
428 WAGE78 (42) = 5.88D0
429 WAGE78(43) = 5.68D0
430 WAGE78 (44) = 5.10D0
431 WAGE78 (45) = 5.11D0
432 WAGE78(46) = 7.56D0
433 WAGE78(47) = 6.68D0
434 WAGE78(48) = 6.69D0
435 WAGE78(49) = 6.18D0
436 WAGE78 (50) = 8.86D0
437 WAGE78(51) = 5.90D0
438 c

439 RETURN

440 END

441 Cttt*iii*ttt*t*itt**tttt**iittt****iti*tt*tt**t*ititt*****
442 C subroutine to assign values of model coefficients
443 Ctk*’ktt*t*tt*ttkﬂt*tt*t****tk****tt*k*ttt*tt****’k*tt**tk**
444 SUBROUTINE MODVAL

445 C



446 C declaration section

447 C

448 INTEGER M2INDX (9),M3INDX(7)
449 REAL*8 M1BETA(17,4),MICNST(4),M2BETA(10,4),M2CNST (4),
450 & M2STDV (4) ,M3BETA (10, 4) ,M3CNST (4) ,M3STDV (4)
451 COMMON/MODEL/ M2INDX,M3INDX,M1BETA,M1CNST,M2BETA,
452 & M2CNST, M2STDV,M3BETA,M3CNST,M3STDV
453 C

454 C probit index model estimated coefficients from Table A.1l
455 cC

456 MICNST (1) = 0.345D0

457 MICNST (2) = -1.984D0

458 MICNST(3) = 0.530D0

459 MI1CNST(4) = 1.997D0

460 C

461 M1BETA(1,1) = 0.289D0

462 MIBETA(2,1) = 0.406D0

463 M1BETA(3,1) = -0.015D0

464 M1BETA(4,1) = 0.DO0

465 M1BETA(5,1) = -0.272D0

466 M1BETA(6,1) = 0.335D0

467 M1BETA(7,1) = 0.027D0

468 M1BETA(8,1]) = 0.017D0

469 M1BETA(9,1) = -0.008D0

470 M1BETA(10,1) = -0.217D0
471 M1BETA(11,1) = 0.006DO0

472 M1BETA(12,1) = -0.016D0
473 M1BETA(13,1) = 0.DO

474 M1BETA(14,1) = ~-0.035D0
475 MI1BETA(15,1) = 1.317D0

476 M1BETA(16,1) = -0.23D0

477 M1BETA(17,1) = 0.118D0

478 C

479 MIBETA(1,2) = 0.569D0

480 M1BETA(2,2) = 0.258D0

481 M1BETA (3,2) = 0.442D0

482 M1BETA (4,2) = 0.D0

483 M1BETA(5,2) = 0.D0

484 M1BETA(6,2) = 0.DO

485 M1BETA(7,2) = 0.153D0

486 M1BETA(8,2) = 0.002D0

487 M1BETA(9,2) = -0.001D0O

488 M1BETA(10,2) = -0.286D0
489 M1BETA(11,2) = 0.020D0

490 M1BETA(12,2) = 0.DO

491 M1BETA(13,2) = -0.005D0
492 MIBETA (14,2) = -0.116D0
493 M1BETA (15,2) = 2.754D0

494 M1BETA(16,2) = -0.108D0
495 M1BETA (17,2) = 0.055D0

496 c

497 M1BETA(1,3) = 0.DO

498 M1BETA(2,3) = 0.DO

499 M1BETA(3,3) = 0.554D0

500 M1BETA(4,3) = -1.401D0O

501 M1BETA(S5,3) = =-1.332D0

502 M1BETA(6,3) = -0.290D0

503 M1BETA(7,3) = 0.036D0



504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
538
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

OO0

M1BETA(8, 3)

M1BETA(9, 3)

M1BETA (10, 3)
M1BETA (11, 3)
M1BETA (12, 3)
M1BETA (13, 3)
M1BETA (14, 3)
M1BETA (15, 3)
M1BETA (16, 3)
M1BETA (17, 3)

M1BETA(1, 4)
M1BETA (2, 4)
M1BETA (3, 4)
M1BETA (4, 4)
M1BETA (5, 4)
M1BETA (6, 4)
M1BETA (7, 4)
M1BETA (8, 4)
M1BETA (9, 4)
M1BETA (10, 4)
M1BETA (11, 4)
M1BETA (12, 4)
M1BETA (13, 4)
M1BETA (14, 4)
M1BETA (15, 4)
M1BETA (16, 4)
M1BETA (17, 4)

log of offered
from Table A.2

I

M2INDX (1)
M2INDX (2)
M2INDX (3)
M2INDX (4)
M2INDX (5)
M2INDX (6)
M2INDX (7)
M2INDX (8)
M2INDX(9)

E K 8 0w ouonn

M2CNST (1)
M2CNST (2)
M2CNST (3)
M2CNST (4)

o onn

M2BETA (1, 1)
M2BETA (2, 1)
M2BETA(3,1)
M2BETA(4,1)
M2BETA (5, 1)
M2BETA (6,1)
M2BETA(7,1)
M2BETA (8, 1)
M2BETA (9, 1)
M2BETA (10, 1)
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= -0.035D0

= 0.021D0

= 0.357D0
-0.022D0
-0.018D0
0.b0

0.126D0
1.167D0
-0.050D0
-0.016D0

Bonon

#ononon

0.D0

0.D0
1.303D0
-0.795D0
0.D0

0.D0
0.010D0
-0.047D0
= 0.046D0

= -0.326D0
0.220D0
0.D0
0.097D0
-0.360D0
3.748D0
-0.054D0
0.053D0

wage rate model estimated coefficients

0.111D0
0.165D0
-0.854D0
3.262D0

0.016D0
0.D0
0.D0
0.001D0
-0.011D0
0.050D0
0.311D0
-0.058D0
= 0.002D0
= 1.252D0

[ T (N R



562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
5717
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
585
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

C
C
C

M2BETA (1, 2)
M2BETA (2, 2)
M2BETA (3, 2)
M2BETA (4, 2)
M2BETA (5, 2)
M2BETA (6, 2)
M2BETA (7, 2)
M2BETA (8, 2)
M2BETA (9, 2)

M2BETA (10, 2)

M2BETA(1, 3)
M2BETA(2, 3)
M2BETA (3, 3)
M2BETA (4, 3)
M2BETA (S, 3)
M2BETA (6, 3)
M2BETA(7, 3)
M2BETA (8, 3)
M2BETA (9, 3)

M2BETA (10, 3)

M2BETA (1, 4)
M2BETA (2, 4)
M2BETA (3, 4)
MZ2BETA (4, 4)
M2BETA (5, 4)
M2BETA (6, 4)
MZ2BETA (7, 4)
M2BETA (8, 4)
M2BETA (9, 4)
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-0.028D0
0.D0
-0.001D0
-0.002D0
0.006D0
-0.054D0
0.533D0
0.018D0
0.003D0

= -0.494D0

[ I O N BN B |

0.408D0
-0.919D0
-0.010D0
.048D0
.328D0
.116D0
.DO
.007D0
.DO

= 0.807D0

[N R I B I B N B |

OCOOOOOo

2.287D0
-2.008D0
-0.087D0
0.162D0
-2.151D0
-1.288D0
0.D0

0.043D0
= 0.D0

M2BETA(10,4) = 2.508D0

M2STDV (1) =
M2STDV (2)
M2STDV (3)
M2STDV (4)

]

M3INDX (1)
M3INDX (2)
M3INDX(3)
M3INDX (4)
M3INDX (5)
M3INDX (6)
M3INDX (7)

M3CNST (1)
M3CNST (2)
M3CNST (3)
M3CNST (4)

¢ n

M3BETA(1,1)
M3BETA (2,1)
M3BETA(3,1)
M3BETA (4, 1)

0.50445D0
0.52223D0

= 0.74243D0

1.0074D0

log of annual hours of work model estimated coefficients
from Table A.3

o Jon

11
12
13

-0.193D0
-0.081D0
6.714D0
7.290D0

= 0.D0

1.281D0
-0.215D0
0.058D0



620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

655
656
657
658
659
660
661
662
663
664
665
666
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M3BETA(5,1) = 0.006D0
M3BETA (6,1) = 0.003D0
M3BETA(7,1) = 0.002D0
M3BETA(8,1) = -0.002D0
M3BETA(9,1) = 0.DO
M3BETA(10,1) = 1.115D0
M3BETA(1,2) = 0.D0
M3BETA(2,2) = -1.338D0
M3BETA(3,2) = 0.D0
M3BETA(4,2) = 0.DO0
M3BETA(5,2) = 0.042D0
M3BETA(6,2) = -0.003D0
M3BETA(7,2) = 0.014D0
M3BETA(8,2) = 0.DO
M3BETA(9,2) = 0.025D0
M3BETA(10,2) = 1.578D0
M3BETA(1,3) = 0.033D0
M3BETA(2,3) = 0.D0
M3BETA(3,3) = 0.553D0
M3BETA(4,3) = -0.078D0
M3BETA(5,3) = 0.050D0
M3BETA (6,3) = -0.002D0
M3BETA(7,3) = -0.052D0
M3BETA(8,3) = 0.DO0
M3BETA(9,3) = 0.D0
M3BETA(10,3) = -0.163C0
M3BETA(1,4) = -0.769D0
M3BETA(2,4) = 0.D0
M3BETA(3,4) = 0.DO
M3BETA(4,4) = 0.DO
M3BETA(5,4) = 0.047D0
M3BETA(6,4) = -0.040D0
M3BETA(7,4) = -0.012D0
M3BETA(8,4) = 0.D0
M3BETA (9,4) = 0.D0
M3BETA (10,4) = 0.337D0
M3STDV(1l) = 0.69995D0
M3STDV(2) = 0.54281D0
M3STDV(3) = 1.5211D0
M3STDV(4) = 1.6664D0
RETURN

END
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APPENDIX C
ESTIMATING STANDARD DEVIATION VALUES FOR THE
MICROSIMULATION MODEL

A sequence of MIDAS commands was used to find the information
necessary to determine the sample standard deviations to be used in the
simulation model. There are four standard deviations used in the Wage
Rate step, and four standard deviations used in the Hours Worked step. In
each step, the four standard deviations correspond to the 2x2 classifications
of the wives on age (young/old) and previous year's employment
(idle/worked). For those wives who did not work in the previous year, the
model dependent variables are log of wage rate and log of annual hours of
work; for those wives who did work in the previous year, the model
dependent variables are the differences, between the current and
preceedings years, in the logs of wage rates and the logs of annual hours of
work. The Nakamura paper does not provide the model standard deviation
values; however, the coefficient of determination (R2) values are provided.
The model coefficients of determination and the sample standard deviations
of the PSID data corresponding to the model dependent variables are used to
estimate the standard deviations to use in the microsimulation model
stochastic disturbance distributions.

The sequence of MIDAS commands used to code a new pair of
variables for age (young/old) and employment in 1977 (idle/worked) is given
in Table C.1. These commands assume that the decision unit sample is
currently in the workspace; the variable numbers (on the right of the equal
signs) refer to the PSID numbers. The sample standard deviations for each

stratum, for the number of hours worked and for the hourly wage rate for
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the wives in the microunit sample that had worked in 1978 are given in the

output of the two DESCRIBE commands.

Table C.1 - MIDAS Commands for Stratification

trans vl=v6348*v6398 lab=*

code v2=cuts(vl) points=,1, label=work78(none,some)
trans v3=v5743*y5788 lab=*

code vi4=cuts(v3) points=,1, label=work77 (none,some)
code v5=cuts(v5852) points=,47, label=age(young,old)
trans vll=log(v6348) label=loghrs78 case=v2:2

trans v12=v6398/v6348 label=wage78 case=same

trans v13=log(vl2) label=logwag78 case=same

trans v14=1log(v5743) label=loghrs77 case=same

10 trans v15=v1l1-v14 label=difloghrs case=same

12 trans v16=v5788/v5743 label=wage77 case=same

13 trans v17=log(vlé) label=logwag’77 case=same

14 trans v18=v13-v17 label=diflogwag case=same

15 describe bystrata v=11,13 cases=v2:2*v4:1 strata=v5
16 describe bystrata v=15,18 cases=v2:2*v4:2 strata=v5

WO~ o WK P~

The standard deviation for each stochastic disturbance term is found

sl
n- (k + 1)

where s, denotes the sample standard deviation for the stochastic

8g =

disturbance term , sy denotes the sample standard deviation of the
dependent variable, R? denotes the Nakamura model coefficient of
determination, n denotes the stratum sample size, and k denotes the
number of explanatory variables in the Nakamura model step. Values for
sy and n are obtained from the analysis described in Table C.1; values for R?
and k are obtained from Nakamura and Nakamura (1985a, Tables A.1
through A.3). This analysis is performed for each stratum in the Wage
Rate step and in the Hours Worked step of the microsimulation model. The

sample and computed values are given in Table C.2.
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Table C.2 - Estimating Standard Deviations

Stratum Sample Model
R2 Se

.038 0.50445

Step n Sy k
wage worked young 375 0.50809 9
old 221 0.51769 9 .024 052223
idle young 74 0.74980 8 127 0.74243
old 19 1.0598 8 498 10074
8
6
7
5

hours worked young 375 0.71995 075 0.69995
old 221 0.59892 201 0.54281

idle young 74 1.4863 .063 1.5211

old 19 1.5753 190  1.6683
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APPENDIX D
INTEGRAL EVALUATIONS

This appendix presents the derivation of results used in Chapter 4 for
the integration of certain functions. These results are based on three
theorems given in Graybill (1969), which are presented immediately below.

Here, I is the identity matrix, and J is the square matrix of ones, each with

the appropriate dimensions; tr(M) denotes the trace of matrix M.
As stated on pages 171-172 of Graybill (1969):

Theorem 8.3.4 Let the kxk matrix C be defined by

C = (a-b)I+bJd.

The matrix C has an inverse if and only if a+#band a # -(k-1)b.
If Clexists, it is given by

1__ 1 [{.__b
C =% [I a+(k-1)b J]' *

As stated on page 185 of Graybill (1969), referring to the matrix C:

Theorem 8.4.4 The determinant of the matrix given in
Theorem 8.3.4 is equal to

(a-b)*? [a+(k-1)b] : .

And, as stated on page 252 of Graybill (1969), for the evaluation of a
general multiple integral:

Theorem 10.5.1 Let aj,and b, be scalar constants; let a be an

n x 1 vector of constants; let b be an nx 1 vector of constants; let

A be an nxn symmetric matrix of constants; let B be a positive
definite matrix of constants. Then,
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400 oo
J j (x'Ax+x'a+ ao)exp[- (x'Bx+x’b+b0)] dx,---dx,

=-% 2 IBI'”Zexp[(%)b'B'lb-bo}
x[tr(AB'l) -b’B"a+%b'B"A B'1b+2ao],

where the nx1 vector x has components x,, -+, X . .

The following four results are special cases of Theorem 10.5.1.

Result (1)

j” _:j:;xp[ i aéll xi-é ﬁka-y(i X kﬂﬁ dX,

et 1 k=1 k=1

m < 2
m/2a-(m'1)/2((1+my)'llzexq k=1 ) =1
4o 4 a+my)

=7

This result follows from Theorem 10.5.1, using the following definitions:
n=m; A is the m x m matrix of zeros; a is the m x 1 vector of zeros; a, =1, B
zal+yJ); b =8"= (Bv - Bm)'; and by = 0. By Theorem 8.3.4, when o, and

v are restricted so that B is positive definite,

Y

B'l=% I- J

o+ my
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so0,
-
1 Y
PBlb=p|—]|I- J ||
o o + my
1 Y
=—|p'18 B'JB
o o + my
m 2
rzn: 2\ Y Z B
#h) '|5
- k=1 ) .
a a(a+my)
Thus,

exp[(—i-)b’B'lb] = exp| ! -

And by Theorem 8.4.4,
IBI = am'l(ow mv);

thus,

IBI"'1/2 = a-(m-l)/2(a+my)-1/2_
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+ oo

.:[exp[- aXz-BX]dX = nl2 o V2 [32 (40()'1}.

This result follows from Theorem 10.5.1 using the following definitions:
n=1A=a=0;a,=1;B=0;b=p;and b, = 0.

Result (iii

4+ oo

-:[X-exp[- aX2-BX]dX =-21 gl o 32 B ex B2(4a)'1].

This result follows from Theorem 10.5.1 using the following definitions:
n=1,A=0;a=1,3,=0;B=o;b=;and by =0.
Result Gy}

+ oo

L Xz-exp[- aXz-BX]dX =41 g2 52 (B2+2a) ex B2(4a)’1].

This result follows from Theorem 10.5.1 using the following definitions:
n=1,A= ,a=0;a,=0;B=0o;b=0;and b, =0.
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APPENDIX E
STATISTICAL DENSITIES

This appendix presents definitions for the random variable

distributions used in Chapter 4.
E.1l Normal Random Variable

If a random variable X has a normal distribution with paramters p

andoz,-oo<X<+oo,-oo<u<+oo,and02>0,
2
X ~ Normal(p,o ),

then

(xlu, ) 21to (__ul

and the random variable X has

mean = |, and
: 2
variance = o .

If a random variable X has an inverse gamma distribution with

paramtersxand 3, X >0,a>0,andf >0,

X ~ Inverse Gamma(a, B),

then
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/‘(Xla, ;3) - (I‘(a) B“)" x-@-n exp[—):i%] forX>0,

and the random variable X has

mean:—l—— ifa>1, and

Bla-1)

1
BZ(a-1)%(a-2)

variance = ifa>2.

E3 __Gamma Random Variable

If a random variable X has a gamma distribution with paramters a

and B, X >0,>0,and >0,

X ~ Gamma(a, B) ,
then

/‘(Xla, Bj - (I“(a) [3“)'1 > S exp[;;—(":l forX >0,

and the random variable X has

mean = o3, and

variance = aBz.

Note, if X has a gamma distribution, then X ! has an inverse gamma

distribution.
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APPENDIX F
INTEGRATIONS OVER THE ROW AND COLUMN EFFECTS IN THE
LIKELIHOOD FUNCTION

Let

oo 4o I J

Q= |- Ig(Ri,cj)ndRi dc; ,
ce oo i=1 1
where

i RZ 3 C? 13 (yij-w-R,--C,-T
gl R,C.| = exp - - - 5
() D Y 2D P

The integrations over the R; are performed first. Completing the

square and arranging terms to group those involving R, gives

+ 0o + 00 J CJ2 1 J (yl] "V CJT J
Q = exp| - —_— . XQ dC’
_;[ _;[ e 2(5(2: 1;-;213:21 20123 1 11:1[ j

where

teo oo 1| R® J R® J'(yii'w'ci)Ri I

Q = J"‘_o_[exp N +Y =+

2
Tee 1=1 2 GR j:l 2 oE j:l GE i=1

The multiple integrations over the R; are independent for each i since there
are no cross-product terms; the multiple integrations may be performed as

a product of simple integrations. Arranging terms gives
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4 ™ J h n T
1| += on + Jog -[Jy’ 'Jw'jgcj]
Q1=iI=_1[4_£exP - m R;”- oF R; [dR; o
L - 4 )

The integral is evaluated using Result{ii) of Appendix D:

+ oo

fexp[- aXz- BX]dX = n2q Ve B2 (40:)-1] .
Applying this result to the problem at hand where

J
2 2 -[J?i_-J\V'ZCi]

X=R,a-= 5 3 |[randp = 2j=1
2 Oy O Og
gives Q;
( B J 2
» . op +Jog | 2 -[Jy‘ -JW-ECJ 4(0%+J0R) 1
T R L T
. _

] L
2| ;=
of +Jok \ 12 °“[in~"]“"ch}

I j=1
2
=N 2 2 exp| 3 2, 2 2
2 o5 Op 5 ZOE(OE+J0R)

by

-

Substituting the evaluated integral into the expression for Q gives
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J IQZHdc

j=1
where Q,
2
1 Ct o1y Lyii""’cj)
=exp -3 52 2 2
J=1 20C i=1 j=1 ZOE
B , J o\
2 L Jo2 oz|d¥; -dvy-2.G
O +-Jf&l 2 I [ i ;5% JJ
172
Xn ex
20;2203 A 1=21 2og(o%+Jo§)
(2"°R0123)U2(6E+J0R) 2
- J 1 J
Z(Cjz) > E(‘fyuz 2y;¥-2y; G +\V2+2\|IC,-+CJ.2)
=1 i=1 j=1
X exp| - .
20’2 2(;;

1 J -
o % [* (in)z' 2J° ’i.W'zJ?i.ZCj}

i=l j=1
X expy + 3
O'E(GE+JGR)
[ I J -
0;212 +(J\p)2+2J\yzC + EC
i=] j=1
x exp| +
203(0E+J0'R)



x exp| +

X exp

X exp
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12 2 2
IJ\u2 J opy

og ) 20}23 -0,23(0§+Jo§)+20§(o§+Jo§)

J
J J 2 2
z (Cjz) IZ (Cjz) Iog (2 Cj]
f j=1 . )
2 2 2, 2 2
2 o¢ 2 og ZoE(oE+JoR)
J —

J J
Joz7. 3 C;, Wory ¥ G
=1 <1 J=1

+
of;(og + Jog) og(of: + Joﬁ)
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Xexp + 2 - 2 2

J J 2
2
x exp| - 5 5 (C- )+ 7 3 5 C.
] 2 0 O g’ ! 203(0E+JGR) [2;‘ )

; [ Weky. Iy,
xexpl -3 |73 2y - 2 ¥ 2IW 2
= oE(oE+JoR) o (GE+JOR) )
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APPENDIX G
THE NORMALIZING CONSTANT
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2(0% + Jog + Iog) of; + Jo,zz + Io?; 2(0% + Jc;o; + Iog)

Removing from the integral terms not involving y gives:



(L -1-J+ 205+ 3V2 - (I + 20 +1)2 -(J + 20 + 1)2

(of; + Jo}%) (of; + Iog)

Q = (o%)

SSE + 2B;' SSR+2p;' SSC+2p:"

X 02+Jo2+1<52 'lex - - -
(E R C) Zcf; 2(012.3+Jo,2;) 2(01_2;4»10%)
IJS"_.2+xu2 oo
X exp| - ) IQz dy ,

Z(OE +Jon + Iog)
where

IJ+1 Iy +1u

Q2=ex - \'l .

+
2(0%+J0§+Iog) v 0}23+JG§+ Iog
The integral is evaluated using Result (ii) of Appendix 4A:
4+ oo
Iexp{~ oX?- BX]dX =12 Yexp p2 (4(1 ]1] .
Applying this result to the problem at hand, where X = v,

1IJ +1 Ly +wu

,and B =- gives:
2(0% + Jog + Iog) of; + Jog + Iog

o =



- =
Jy +1u 2
. ) 2 2
+o0 1J + 1 - V2 og + Jog + Iog
I Qdy =1 V2 3 3 3 exp
S 2(0E+JGR+IOC) 4(IJ + x)
2(0% +Jon + Io%)
_ 2
on |12 (IJY_,*"W)
= (o% +Jo2 + Iog) 12 exp " ; "
IJ+1 Z(IJ + r)(oE +Jog + Ioc)
Substituting the evaluated integral into the expression for Q, gives:
-(J + 20+ 1V2

(J-1-J+2 3y2 9. -I+2 1y2
Q = (of;) %t (0123+Joﬁ) = (012-:'*10?:)

1 SSE+2B;! SSR+2B;' SSC+2p;

X <12+Jcs2+1<32 expl - - -
(E ? C) 202 2(0%+J0§) 2(01.23+Iog)

IJY__2+tu2

x exp| -
2(0% +Joi + Iog)

2
o 12 (IJ y +1 u)
(of; +Job + Icg) V2 ox

J+1 2(IJ + r)(o% +Jod + 10(2;)



2n 172

2
- (°2)
IJ+1

-(J+ 20,4+ 1V2

~(J-1-J+20;+3)2 -(I+ 205+ 1)2

(012; + Jcﬁ)

12
X (o% + Iog) (cf; + Joo + 10%)

[ SSE+2p;' SSR+2p;  SSC+2p¢
x exp| - - -
267 2(012.3 +dJ cg) 2(0% + Io%)
[ - 2 2 v 2
Jy “+tp (IJY..+T“)
x exp| - 2 2 2. t
2(GE+JGR+ Ioc) 2(1J+T)(G;2,3+J612;+162)

Regarding those terms in the exponent that are functions of pory :

2
IJY"2+I;12 (I;Ji“wrp)

9l +dod + 162 2 .2 -2
(°E+ O + OC) 2(1J+T)(GE+JGR+IGC)

- (IJ + r)(IJ j_2+w2)+ (IJ y + 'ru)z

Z(IJ + :)(of; +Jo5 + Iog)

-(IJY_)Z— IJtuZ-IJ't 57__2-(1 u)2+(lJy_)2+ 21Jj_tu+(t u)2

2 (IJ + 1)(0,2; + Joﬁ + Iog)
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2

-IJ'tu2- y °+21Jy tn

Z(IJ + t)(of; +Jo2 + Ic?})

-IJ‘t(u2+i_'2-2y.u)

Z(IJ + t)(of; +Jos + Iog)

-IJc(u-y_)z

2(IJ + t)(oﬁ +Job + Icg)

Substituting into the expression for Q; gives:

2\ (1J-1-J + 20, + 3V2 I+ 20, +1¥2
-(IJ-1-J+ + -(I+ +
Q = (og) % (o% +dJ 0;2;) =
IJ+1
-J+2 12 -1/2
X (012; + Iog) et (012,3 + Joﬁ + Iof})

[ SSE+2p;' SSR+2B;° SSC+2Bg"

X exp| - - -
2 2(0% + Jcﬁ) 2(0% + Icg)

20g
-l (u - Y_)z
X exp| -

2(IJ + t)(of.z; + Joﬁ + Io%)

The normalizing constant is given by



27 12

(e Lol

where g(ol Lyﬁ})

2. -(1J-1-J+20,+3y2 , o 2 -I+20,+1¥2 , 9 2. -(J +20,+1)2
= (oE) % (oE +d GR) o (GE + Ioc) %

. SSE+2B;' SSR+2B;' SSC+2B:"

X o§+Jo§+Iog exp| - 5 - 2 2T - 2 5
205 2(0E + JOR) 2(0’E + Ioc)
-1Jt (i y_)z

2(IJ + t)(of; + Joﬁ + Io%)

x exp| -
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APPENDIX H
INTEGRATION OVER y IN THE JOINT POSTERIOR DISTRIBUTION

The subscript (J+1) is omitted from the variable X in this appendix.
Let

4 oo

Q= _ig(w)dw

where

gy) = C (2 n 03)' v (sz)

2 2
X (O'E + Ioc)

[ SSE+2P;' SSR+2P;’ SSC+2B:’

X ex - - -
P 2 o% 2 (o% + Joﬁ) 2(0% + Io%)
L

e B

20(2; 2(0%+Jo§+ Io%)

~(W-T-J+20;+3)2 -(I+ 205 +1)2

(o% + chi)

-(J+20.+1)2 -1
% (of; +Jos + 10(2;)

X exp

=

Regarding those terms in the exponent which are functions of v,

completing the squares and arranging terms gives:

o )

20?: ] 2(o§+Jo§+Iog)
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X2.2Xy+ y? U(’Y‘..z-2’i..w+\v2)+ t(\vz-zuw uz)

B 20?, 2(012.; + Jo§ + Iog)

X% Xy \y2
= 2t 2 2
200 ©¢ 20¢

Jy 2 Jy
y. y.v Ty

2(0% +Job + 10(23) o + Joh + Ios 2(0% +Joh + Io%)

1y’ an wp?

- + -
2(0% +Job + Iog) o2 +Jcd + 1% 2(0% +Jos + Io%)

, 1y Zery? Uy +tp
e S 2
20?J 2(01_23 +Jo§ + Iog) og cf;-&-Jcﬁ + Iog

_(1 N IJ++ sz

20(23 2(0% + Joﬁ + 10(23)

207 2(0E+J0R+Ioc o2 0E+JoR+ Icc)

, Wy et [ 0E+J°n+10c) EJ?..*“W]"?:
X

GE+JGR+(I+IJ+ o

ZGC(OE + JGR + IOC)
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Substituting into Q, and removing from the integral terms not involving vy
gives:

Q=0C (2 n o%)' V2 (c%)

-(IJ-1-J+20a;+3)2 -(I+205+1)2

(of; +dJ oﬁ)

-+ 200 + 102 -1
x(of;+10(23) ot (o§+Jo§+Icg)

 SSE+2B;' SSR+2P;' SSC+2B:]
X ex - - -
P 2 of; 2(0% + Joﬁ) 2(01,23 + Iog)
-
0 IJ?"2+1p2 +oo
X [Q,av
xexp| - - ’
I 200 2(0%+Jo§+log) AN

where
of;+Jo§+(I + IJ+1)0(23
Q, = exp - 2
! 203(0%+J0§+Io%) v
X(og +Jo2 + Iog) iIJ y.+ Tu)og
x exp| + V.

cg(cf; + Jo% + Icg)
The integral is evaluated using Result (ii) of Appendix 4A:

+ oo

j exp[- oX2- BX]dX = qg2q 12 exp[[}2 (4(1 )1] :

Applying this result to the problem at hand, where X = v,
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o§+Jc§+(I+IJ+t)og

, and
2 0(2:(012.3 + Joi + Iog)

X(og + Joﬁ + Iog) + (IJ y.+ ‘tu)og

p=- og(of; + Jog + Iog)

gives:

+ oo

o§+Jo§+(I+IJ+t)og - 172
,[Qld\ll = g2

203(03 +Jop + Iog)
X(og +Jo% + Icg)+ (IJS"__ + 'cu)cg 2

- 2. 2 2 2
oc(oE +dJop + Ioc)

X exp
4[0% + Joﬁ + (I +1J + 1)03]

2 og(of;_ +Joh + Iog)

= (Znog)w (of; +Job + Icsg)v2 {01.23 +Jos + (I +1J + t)og}'m

[X (of; + Jog + Icg)+ (IJ y + tu)og] 2

x exp| +

20?3(01,2; +Jon + Iog)[og +Jos + (I +1J + t)og}
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Substituting the evaluated integral into the expression for Q gives:

) ST -1-J + 20, + 3Y2 -1+ 20, + 1)2
Q = C1(2ncg) 1/2(0%) Ot (of‘;+Jo§) M

2 -(J+20,+1)2
x(oE+Icg) %

(035 +Joh + Iof})' '
[ SSE+2P;' SSR+2p;' SSC+2p:!

X exp| - - -
201‘?5 2(0% +Jo§) 2(0;2; + Iog)

1J 57”2+'tp.2

XZ
20(23 2(0?5 + Jog + Iog)

X exp

x(2nog)w(o§+Jo§ + Iog)m[o%+J012t +(I +1J + T)Gg]-m

e

[X (0;2; +Jot + Iog)a—ﬁJ y o+ tu)cg]z

202(012.; + Joﬁ + Iog)[cf; + ch + (I +1J + tjcg]

x exp| +
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(13 -1-J + 20 + 3)2 -+ 20, + 102 - + 20+ 1/2
=Cl(o%) M (012.;+Jo§) Ot (o%+lo(23) %

.12 -
X (c% +Jo§ + Io%) [o% + Jcﬁ + (I +1J + t)og] v

[ SSE+2B;' SSR+2B;° SSC+2p:!
x exp| - - ;
P 262 2(0%+J0§) 2(0§+Icg)
i 0 IJy__2+1u2
X
Xexp -~ T3 2 2 2
20'0 Z(O'E + JGR + Icc)
2
[X(of; +Jop + 10(2;)+ (IJ y.+ 1u)cf‘,]
x exp| +
20?3(012;; + Jog + Iog)[og +Jo§ + (I +1J + t)og}

Regarding those terms in the exponent that are functions of X, por y :

2
o Uy 2+ap? [X(cf;+Jc§+Iog)+(IJj_+tu)og]

T2 5,2 2 e, t
26c 2(03 +Jop + IGC) 20%(0% +Jon + Iog)[o% +Jok + (I +1J+ t)ogJ



0 Y c| Ao vo
%T+E+©+«bﬁ+«b N0H+wbw+wb 203 .

oo (1245 ) + o1 + tor + 30
NPDTC+ me+ 201 + %op + 70X

o) d q mo d mv
mep+2 +©+~bh+«b NbH+wa+Nb mbm

mohp + PT + Hu +¥p +% wopnp.;..mwmw

o) Y q ﬁo mv
NOAP+E+Q+NEJ+NO NbH+wow+Nb wbm

0 il | Ao mu
Nomp+3+&+mow+uo NbH+wbH.+No - X

4] 14



4L10

X2 (0,2: + Joﬁ + Iog)[(og + Jog + Io%)+ (IJ + 1)0‘(2;]

202(0% +Jok + Io%)lic% +Jo2 + (I +1J + 1)03}

(IJ 37"2 + tuZJGg[(of; + Jog + 10(23)4» (IJ + t)og]

202(0% +Jos + Icg){og +Jok + (I +1J + t)og}

(+[X(G§+J0§+Iog)]2 \

+2X (IJ v+ tu)cg(of; +Jop + Io%)

\ + [(IJ y +1 u)og]z )

+
20%(0% + Joﬁ + Iog)[of; + Jofi + (I +1J + 'c)og:l



L1

[X(oé + Jcs% + 102)]2 + X2 (IJ + t)cg(o% + Jo% + Iog)

203(0% +Jo2 + Iog)[o% + Jo% + (I +1J + t)og]

(IJ y.2+ wzjog(og +Jop + Icg)+ (IJ + 1)(IJ y. 2+ tuzj(og)z

202(012.3 + Jog + Icg)[cf; + Jog + (I +1J + t)og]

[X (og + ch + Iog)] 2

+
20?3(0% + Jog + Iog)[o% +Jon + (I +1J + t)og}

2X({1Jy + 1;1)0(2:(0,,23 rJok + Iog)

+
202(01.2; +Jo2 + Iog)[o% +Jo5 + (I +1J + t)og}

{(IJ ;7_)2 +20F 1+ (1: uﬂ (03)2

20%(0% + Job + Io%)[o% + Jo% + (I +1J + 1)0%]
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Xz(IJ +1)

Zl:of; + Jog + (I +1J + 1)03]

IJy“2+tu2

2[0% + Jclzz + (I +1J + 1:)0?,]

(IJ + I)(IJ 7._2 + n,tz)og

2(0% +Jos + Iog) of; + Joi + (I +1J + t)ogJ

2X(IJ3"..+tp)

4
2[0123 + Jog + (I +1d + ’r)cg]

[(IJ y_)z +2ldy tp+ (t u)z] og

+
2(0% + Joﬁ + Ic%)[o% + Jog + (I +1J+ x)og]
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XZ(IJ + t)- 2X(IJj_+1:p.)

2[0% + Jog + (I +1J + t)og:l

IJS'""2+1;12

2{0% + Jog + (I +1J + 1)0(2;}

[(IJ ‘i_)z +2lJy tp+ (‘t pr - (IJ y_)z S OLAT 2. IJ‘cy“2 - (’t u){l 0(2;

+
2(0% +Jop + Iog)[of; +Jo5 + (I +1J + t)o?{l

XZ(IJ ¥ 'c)- 2X(IJ ¥+ ruj

2[0% + Jog + (I +1J + t)og}

IJY__2+tu2

2[0% +Jo% + (I +1J + c)oﬁ]

IJt (pz -2y p+ y__2)og

2(0% + Joﬁ + Iog)[cg + Joﬁ + (I +1J + 1)0(2{'



XZ(IJ+I)-2X(IJ§_+ULJ

2[0% + Joﬁ + (I +1J + 1)0(2;]

IJy._2+tu2

2[03; + ch + (I +1d + 1:)0(23}

IJ1 (u- y_)%ﬁ

2(0% +Jo5 + Iog)[og +Jo% + (I +1J + t)o?{l
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X2(1J+1) 2X(1Jy +Tp )

2[0E+J0R+ I+IJ +‘C ]

| (IJy +1p Jz
2(1J+1:)[OE+JGR+(I IJ+T) ]

(IJ?__+'cu)2 IJ?_‘2+TL12

+ -
2(IJ + T)[Oé + Jog + (I +1J + t)og:] 2[0,23 +Jo§ + (I +1J + 1)0(2;]

IJt (u- y_)%?;

2(0% + Jog + Iog)[of: + Jog + (I +1J + t)og]




0 Y g ﬁo d mu
NDAP+hH+Hv+NbH~+Nb NOH+N.OH¢+ND A

o) L -
waﬁ% q@ oty

0 - |
NOAP + [T + Hv + tho.f N.O AP + ﬁHVN

Ap + vanp + N..h EW -N?p + £ Eu

1+ L]

+

(4

(0] ? b ¢ d
Nbﬁv+hm+mv+wbhu+wb

1+ 1 1+ I
H ——|X3-,X

2l Mr+ £p1 i+ L]



0 q a (o U a)
[Zo(z + 01 +1)+ Zop+zo] oo] + %or +%0)2

O L -
Zoz(é ﬁ)lfl

0 s ¢ q
Lo(z + Ll + I) + ZDP + ZD](l + [‘I)z

+
Z(ﬂz) -Zﬂlfl-z"ézfr-z('é m)-im)m"é 1113 +z('£ PI)

1+ ]

.
6

0 u
Zo(m+p1+1)+zof+go

1+ P
-X

A T+ L]



oor+dop+3 1+ [I wbmp+3+@+wow+mom
2.z g
T
5 ]
2" Ndm-iwea

1+ PI

(4

0 el
%T+E+~v+mon+wb

2+ Pl
-X

o T+ £p]

o Y c Ao u mv
0mp+2+©+mow+mo 201 + Yor +%0)3

(4
o299 | "£-1
4 Nﬁl WPWH

0 Y d
mev + [P+ Hv + NDH.+ N.O AP + GHVN
x;@
le 11

1+ Py

(4

o)
ac?+2+@+mow+wo

1+ LI
-X

A i+ £p1



Ky +tu 2

X-
IJ+1

o§+Jcﬁ+(l+IJ+1)og

2
IJ + 1
IJz(p-y_)z c§+Jo§+(I+IJ+‘c)Gg
) 2 2 2 2 2 2
2[03 +Jog + (I +1J + t)cCJ (IJ + T)(UE +Jog + Ioc)
U5 +1p )2
X . ———— _\2
IJ +1 IJT(u'yJ
2 . 2 2 2 .2 . 2
o + Jog + (I +1J + t)oc 2(IJ + T)(UE +Jog + IC’C)
2

IJ +1



Substituting into the expression for Q gives:

S -1-J ~(1+2 -(J+2
chl(og)( +203+3W(G%+Jo§)(+ 03+1)/2(o%+103)( + 20 + 1¥2
.Y, 12
X (cg +Jc§ + 10(23) 12{0% +Jo§ + (I +1J + t)oﬁ]
~ SSE+2P;' SSR+2Bz' SSC+2p!
x exp| - - -
P 20% 2(0,2.;+Jc§) 2(0%+Iog)
05 +1p |2
_\2 X-—m
IJT(“'Y-) IJ +1
X expt - 2 2 . 2y
2(IJ+1)(0'E+JGR+IO’C) c§+Jo§+(I+IJ+1:)Gg
2
IJ++<
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APPENDIX I
INTEGRATION OVER X IN THE POSTERIOR EXPECTED VALUE

The subscript (J+1) is omitted from the variable X in this appendix.
Let

+ 0o

Q= | fg(x,ol{yij})dxcio

E - 00

where g(X, ol {yﬁ})

S(1J-1-J+ d+2 s
= XCq (G%) ( 20 + 3)2 (012.3+J0}2;) (I+ 205+ 1¥2 (0’%+Io%) (J + 20 + 1¥2
.1/2 e
x(o§+Jo§+Iog) ' [o§+Jo§+(l+IJ+t)cg] .
SSE+2pB;' SSR+2p;' SSC+2p;*
x exp| - ] _
D 20}23 2(0%+J0§) 2(0%4.10(2:)
IJ + 1 Iy +p
= \2 X.———
IJT(“'Y~) 2 IJ +1
x exp| - - i 2
2(1J+t)(oE+Jo§+Ioc) GE+J0§+(I+IJ+T}JC

Regarding those terms in the exponent which are functions of X:



, - 2 - 2
1J + 1 IJy +tp Jy +u
X-—— Xe—0
2 IJ+1 1J+1
0§+J6§+(I+IJ+T)U?; o%+Jc§+(I+IJ+1)o<23
2
IJ +
Wy +1tp Iy +1pu 2
X2-2X — |
IJ +1 IJ+
o§+Jo§+(l+IJ+t)og
2

IJ+1

X2(IJ +t) X[IJy_gmu)
17 2 2
2[0§+J0§ +(I +1J + t)og °E+JGR+(I +1J + T)Uc

(IJ y + )2
/

2(IJ + t)[cg +Jo§ + (I +1J + t)og}

Substituting and arranging terms gives




g(X, o {yij})

-(I+ 205 +1)2 -(J+2oc+1)/2

(cf; + Iog)

i 12
X (of; +Jos + Io%) V2 [of; +Joh + (I +1J + r)o?{l

[ SSE+2p' SSR+2B' SSC+2p¢"
x exp| - - -
P 202 2(0%+Jo§) 2(0% + 102)
- ) , =
GJ y._+1:u)
x exp| - S 2 -
2(IJ + 1)[01; +dJog + (I +1J + T)"c}
I IJt(u- y_)2
X exp - 2 .2 .2
2(IJ + I) (O’E +dJog + Ioc)
X2(1J+1) -X(IJ?_&w)
x X-exp| - " ; = |
2[0%+Jo§+(I+IJ+1)o(23] oE+JoR+(I+IJ+t)oC

The integration over X is performed analytically; let:
+ 00
Q= J [Q1 JdeX]do
z - o0

where



-(LJ-1-J + 20 + 3¥2 -(I+ 20+ 1)2 -(J + 20 + 12

Q =G (of;) (o% + Io?;)

(o% + Jog)

-12 -172
x(o%+Jo§+Io‘?}) ' [012;+J0§+(I+1J+t)cg]

[ SSE+2pB;' SSR+2p;' SSC+2p!
x exp| - - -
P 20% 2(0%+Jo;21) 2(0% + Iog)
(IJ 5”._+‘tu)2
x exp| -
Z(IJ + ‘t)[cﬁ + Joﬁ + (I +1J + t)wz:]
- -

2
IJ 1 (,u- y_)

X exp - 2 e .2\ |’
2(IJ + 1) (GE +dJop + Ioc)

and

X2(1J+'t) 'X(I‘W--”ﬂ
Qe = Xexp| -

T2 o2 2
2[0%+Jcﬁ+(I+IJ+t)og} 0'E+J°R+(I+IJ+T)UC

The integration of Q2 over X is evaluated using Result (ii1) of Appendix 4A:

+ oo

':[X-exp[-aXZ-BX]dX = -9 glf2 o %2 B exp[B2(4a)'l].

Applying this result to the problem at hand, where
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IJ +1

-(IJj_ + tu)

o

andp =

2{0% + Jog + (I +1J + 1)0%]

+ oo

gives IQz dX

o§+Jo§+(I+IJ+I)Ug

-(IJS{_-H;j

o§+Jo§+(I+IJ+t)og

——y

4(IJ + z)

IJ +1 "9
= .g-1 12
2|:0§;+J0§+(I + 1d +t)o(2;]
-
-(IJj_+tu) 2
X exp " " .
0E+J0R+(I+IJ+1)UC 2':o§+Jo§+(I+IJ+t)U(2;]
IJj__+tu 2 172
= G§+JG§+(I+IJ+
IJ+1 IJ+1
CJY"+tuJ2
X exp

)o] 2

2(IJ + 1)[0,23 + Joﬁ + (I +1J + t)og}

Substituting the evaluated integral gives
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Q [Qqzdx

(- 1-J + 20, + 32 (I + 20, + 1)/2 -(J + 200 + 1V2
=CI(O'E) M (oE + Jog ) v (GE+IO(23) vt

-1/2 -1/2
X (0125 +Jo§ + Iog) [0,23 + Jog + (I +1J + 1}!?;]

[ SSE+2p;' SSR+2B;° SSC+2pg’

x exp| - - -
2 of: 2(0% + Jo%) 2(0% + Iog)

_ ( . ) -
(IJ + x)[o;‘; +Jo% + (1 +17 + x)oé]

2
IJTQL- 37_)
x exp| -

Z(IJ + 1) (o% +Joi + Iog)

x exp| -

o —

Uy +1p on V2

X 0E+JGR+(I+IJ+1)02 12
Id + 1 IJ+1

ey
(IJ + 1)[05 +Job + (1 +1J + 1}72]

X exp

—



Jy +1u 2 2

= | — [Cy

2\ - (- 1-J + 20 + 32
E
Id+1 Id+1 ( )

-(I+20,+1)V2

(o%+Jo§)
-y 12
X (og + Iog) 4200+ 172 (o% +Jok + Iog)

[ SSE+2B;' SSR+2p;' SSC+2p;

x exp)| - - -
20% 2(0% + Jofi) 2(0% + Iog)

2
IJt (u - ;7_)

o

X €xp| - 2 2 2
Z(IJ + 1)(61; +Jog + Ioc)
Jy +1pu on V2
| g(OILvﬁl)
IJ+ IJ+1

where g(cl {yij})is given in Equation (4.12). Substituting into the expression

for Q gives:

Q= J{Ql IdeX}do
L

Ky +u on 2

= J' — 10 g(o|bru}) do
T IJ +1 IJ + 1




Iy +1u

2n

IJd+1

Jy +tu

Id +1

Jy +1u

Id+1

Ci
IJ +1

C;-Cy!

172

Jg

(cl Lyij})dc



INTEGRATION OVER X IN THE POSTERIOR VARIANCE

APPENDIX J

The subscript (J+1) is omitted from the variable X in this appendix.

Let

4 oo

Q= | J'g(x,ol{yﬁ})dXdo

z - 00

where g(X, o [yﬁ])

2 S(W-1-J+20+3 (142 SJ+2
=X-C1(Og)( + 20, + W(OE+J0§)(+%+1W(G%+102)( + 20, + 1V2
-1/2 -172
X (012.3 +Jo§ + Io%) ' [of: + Jog + (I +1J + 1}52}
SSE+2B;. SSR+2P;’ SSC+2Bg"
x exp)| - - -
2 01_2; 2(012.3 + ch) 2(0% + Iog)
1J +1 Wy +tu
\2 X-
IJT(“' y-) 2 1J +1
x exp| - 2 o\ 2 2
Z(IJ + I)(GE +Jo§ + Ioc) o% +JoR+(I +1J + T)Jc




-(J-1-J + + - -(J+2
- 01(0'12.;) (1J-1- J + 205 3)/2(012.3+J0121) (I+ 205 +1)2 (cf;+log) (J + 20+ 1)/2
. 12
x(o§+Jo§+Ic(2;) WI:G%+JC§+(I+IJ+T)J’(2;]
[ SSE+2B;' SSR+2Pg’ SSC+2pg’
xexp| - - -
i 202 2(0%+Jo§) 2(0%+Iog)
o 0 m
(IJi.gmu)
x exp| -
2(IJ + t)[cf; + Jo,zz + (I +IJ + 1:)0(23]
IJT(].L- y-)z
xexp - 2 .2 2
2(IJ +t)(oE+JoR+Ioc)
9 _ -
X X (IJ+1) X(IJy._+tu)
x X -exp| - ,

2 o§+Jo§+(I+IJ+x)o§ o§+JO§+(I+IJ+t)0<2;
_

after completing the square of the exponent term involving X as in

Appendix 4F. The integration over X is performed analytically; let:

Q= I[Qquzdx]do
gL

where



Lo

CIJLJ+ - -(J+2
Q = C](CPZ;) (LJ-1-J + 20, + 3)2 (GE;+J012;) (I+ 20, +1)2 (o§+10§) (J + 20, +1y2
. 12
x(o§+Jc§+Io?;) 1l2[o%+Jo§+(I+IJ+1)og:|
[ SSE+2p; SSR+2p;  SSC+2p:!
x exp| - - -
P 20% 2(0%+Jo§) 2(0%+Io€)
(IJY"+1LLJ2
x exp| -
2 2 2
2(IJ + 1)[013 +Jog + (I +1J+ t)cc]
i IJI(LL- y_)2
xexp - 2 2 2\ |’
2(IJ +t)(oE+JoR+IoC)
and
0 ) _
0 X (IJ+1) X[IJy-»H“)
Q2 = X exp

2[o§+Jo§+(I+IJ+1)og] 0§+J0121+(1+1J+T)Ug

The integration of Q2 over X is evaluated using Result (iv) of

Appendix 4A:

+ oo

Applying this

l Xz'exp[- aXz- BX]dX =41 g2 52 (B2+2a) exp[Bz(4 a)'l}.

result to the problem at hand, where



IJ +1 '(IJ-"--”“)
a = andp =

2 2 2
z[o§+Jo§+(I+IJ+x)c§J GE+JGR+(I+IJ+1)0C

+ 00

gives jQz dX

IJ +1 -5/2
=4 1g!?
2{0%+J0}2;+(I +1J + t)og]
~ _ 9 -
-£IJy__+'tp.) 2(IJ+1)
X +
°%+J°§+(I+IJ+T)U?: 2[0%+Jc§+(I+IJ+t)U?{|

B _ 2 l'ﬂ
-(IJy"+tu) 4(1J+tl

012:+J°§+(I+IJ+T)0<2: 2[0%+Jo§+(I+IJ+1)ogJ

X exp

i



= (Zn)w(IJ + 1)'”[0%+J0§+(I +1J +1)Ug}5'2
(IJ i__+tp)2+(IJ + t)[oﬁ+Jo§+ (I +1J + t)og]

X
[o§+Jo§+(I+IJ+x)o§]2
- 2 2 2|
Jy +1u ) 0E+JoR+(I+IJ+t)oC
X exp 2 9 2
oE+JoR+(I+ IJ+1)UC Z(IJ +'c) i

- (zn)v2(1J+¢)-w[og+Jo§+(l+u”)og]w
x {(IJ o+ Tu)z * (IJ * t){of; +Jok + (1 +1J 4 1)0(23]}

p— -

)
(IJ + x)[oﬁ +Jc2 + (1 +1J + 1)02]

X exp




27

IJ+1

1/2

/2
[of; + ch + (I +1J+ 1)0?{' !

Iy +tp 2 0§+Jo§+(l+IJ+t)og

x exp|

+

IJ +1 IJ+1

(IJ vy + 1;1)2

2(IJ + 1)[0?; + Jo;z; + (I +1J + *c)ug]

Substituting the evaluated integral gives

Q 1 Qg dX
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-(I+ 205 +1)2 -(J + 20, +1)/2

S(J-1-J + 20, + 32
C, (o%) M (o%+Jo§)

(of; + Iog)

-1/2 172
X (01.23 + Joﬁ + Icg) ' {of; + Jog + (I +1J + 1)0(23]

[ SSE+2B;' SSR+2p' SSC+28g"

x exp)| - - .
P 20?; 2(0%+Jo;2¢) 2(0%+Iog)

(IJ y + 1;1)2
2(IJ + t)[cf} + Joﬁ + (I +1J + t)og:]

IJx (p - y.jz
X expj -

2(IJ + t) (og +Jop + Iog)

X exp| -

( 21 1/2 e
o§+Jo§+(I+IJ+t)oc
IJ+t_

\

Uy +1u |2 cf;+Jo§+(I+IJ+’c)ng

1J + 1 A

e

(IJ y.+ w)2

2(IJ + 1)[0% + ch + (I +1J + t)og]

X exp




_ 2 2 2 I )02
Jy +1p GE+J0R+(I+ J +1)o¢ on |2
= + C1
IJ + IJ+1 IJ +1
-(I1J-1-J+ 20, + 3 -I+2 1¥2
x(o%)( + 40 yz(o%+Jo§) 1+ 20+ 17

-(J + 20 + 1)¥2

-2
X (0123 + Iog) (o% + Jon + Iog)

[ SSE+2B;' SSR+2B;° SSC+2p¢"
x exp| - - -
262 z(o§+Jc§) 2(o§+xo§)
2
IJt(p— y_)
X exp| - 2 2 2
2(IJ + ‘t) (oE +dJog + Ioc)

Jy +tu |2 o§+Jo§+(I+IJ+1)a(23 on V2
+ Cl
Id +1 IJd+1 IJ+1

g(cl (yij}) :

where g(ol {yﬁ}) is given in Equation (4.12). Substituting into the expression

for Q gives:

Q= | [Ql IdeX}do
Ll



IJ + 1

¥

IJ + =

IJy +tu 2
C

Iy +1u 2 9
Cy

27

12
IJ + t] g(o|[yﬁ]) de

o§+Jc§+(I+IJ+t)o(23

1J +

IJ+1

2n v2 |
C gl olly;l | |do
1 1 Id + ( J)

Jm zjg(ol{yﬁ})) do

o%+Jo§+(I+IJ+r)og

27 V2 J |

+C, g(c [y--]) do

IJ + 1 )y Id +1 ( N

0y +tp |2
CiCy

IJ+1

ox 12 o§+Jo§+(I+IJ+t)ug

J g(cl[yij}) do
IJ + < p3 IJ+1

o e



| 0§+J6§+(I+IJ+I)U?;
[I‘W.-”“T é[ N g(oliyﬁ}) do

1J +1 ifg(ol(yﬁ})do
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APPENDIX K

ANALYSIS FOR TYPE 1 DATA SET

When the modes of all three variances have positive values, the
approximate value of the integrations in Expression (5.6) is found by

applying Equation (5.9) with respect to all three variances.

OI OI Je (on. 7 OE)dGRdUC do

2 2 2\1
exp{'lo g(GR) (o8 GE) ]}

2
det(H)l 0202 62%=0%02=0"

2
where o ¥ denotes the mode, and H denotes the (3x3) matrix with (i,3)

elements

o%lo, g(oﬁ, og, 012.3)'1]

O

H; = , i,je {R,C,E}.

From Expression (5.6), let



2 2 2
g = g(on Ges GE)
-W1 -W4

2 2\-W2 2 2.-W3 o 2 2
(CE + JOR) (GE + ICC) (OE + JGR + Icc)

- (og)

- W5 W7
X [012.3 + Joﬁ + (I +1J + t)cg} exp{- W26 -3 ) }
O o + Jog
W8 W9 W10

Xexp| -3 2 " 2 2 2 -
2
og +loc o +dJop +log o%+Jo§+(I+IJ+t)oC

Taking the inverse,

1 W4

. w w3
g = (o%)WI (of; + Joﬁ) 2 (o% + Iog) (of; +Jo + Iog)

2 2 2| W5 W6 W7 w8
X oE+JoR+(I+IJ+1)oC expl+ —5 + 3 7+ 2
o Og+dogp of+ log

W9 W10

2 2 *
og +dog + log o§+Jo§+(I+IJ+t)og

x exp| +

Taking the logarithm of the inverse,
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log(g'l) = Wl-log(of;) + W2-log(c,23 + Jdg) + W3-log(012.3 + Iog)
+ W4-log(of3 + Joﬁ + Io?;) + W5~log[o% +Jon + (I +1J + t)og}

+W6+_ W7 N W8 N W9
c% of;+Jo§ o§+10g 012.3+Jo§+10?;

W10
0;2;+Jo§+(1+ IJ+1)0§

-1
The first partial derivatives of log(g )are used in the optimization

subroutine.

alog! g-1 )
o)

J-W2 J-W4 JW5
T 2 ddt  RadilaIlsl T 2 L2 2
Op+Jogp o +Jog + Iog oE+JoR+(I+IJ+t)0C

J-W7 J-W9 J-W10

2 2 2 2 2
(O'E + J<JR)2 (UE +dJog + 100)2 [Of: + Jog + (I +10+ T)Gg]z




I.W3 LW 4 (I+IJ+1: Wb

2 2t 2 o 2t T, T, 2
op +Ioc  op+Jog + Ioc 0E+JO’R+(I+IJ+T)O'C

= +

LW LW (I+IJ+1)W10

- 2 2 - 2 2 2\2
(oE + Icsc)2 (OE +dJop + Ioc) Iiof: + dog + (I +1J + 1)0?;]2

W1 N w2 W3 W4 W5

2 2 . 2%v 2 2%t 2 -2 2%
o og+dJog op+loc op+dog +Iog o§+Jo§+(I+IJ+t)og

W6 W7 W8 W9

(og)z (of; + Joi)z (of; + Iog)z (of; +Jok + Icg)z

] W10
2
[of; +J0§ + (I +1J + t)cg}

.1 :
The second partial derivatives of log(g )are used in the denominator

of the approximation and in the optimization subroutine,
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[a(oﬁ)] 2

JZW2 J2W4 JW5

2 2 2 2 2
(og + JcR)2 (oE +Jog + IOc)2 [oﬁ +Joh + (1 + 10+ 1)03]2

2J2. W7 2J%W9 2J% W10

+ 2 2 + 2 2 2 +
(og + JoR)3 (GE +Jog + 100)3 [o% + Jci + (I +1J + t)ogr

Pwas 2w 4 (I +1J + 1)2-W5

(oE + Icsc)2 (UE +dJog + I"C)z [og +Jot + (I +1d+ 1)0(23]2

212 W8 212W9 2(1 v174 1)Z'W10

+ 2 2 + 2 2 2 +
(01-: + 100)3 (UE +Jog + I(Ic)3 [Gf; +JG;2; + (I +1J + 1)0(23]3



w1 w2 W3 W4

(og)z (of: + Joﬁ)z - (opzz + 10(2:)2 - (0123 +Jog + Iog)z

w5 . 2-W6 . 2W7
213 2 2.3
{cﬁ +d cﬁ + (I +1J + 'c) og] 2 (GE) (OE + JOR)

2'WS 2.W9 2-W10

(GE + Ioc) (GE + Jog + Ioc) {cf; +Job + (I +1J + 1)03} 3

0%l g g"l
e

IJ- W4
2 2 2\2 ° 2
(GE +dop + IOC) [of; +Joh + (I + 1T+ t)ogJ

J(I+IJ+1 W5

21J-W9 2 (I v T)-ww

¥ (52+J<52+I<523+ 2 2 2|9
(E R c) [0E+Joa+ (I+IJ+‘C)GC]
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JW2 JW4 JW5

2 2 2 2 2
(OE + JOR)2 ("E +Jog + 100)2 [012.; +Jo§ + (I +1J + 1:)0(2:]2

+ 2 2 + 2 2 2 +
(UE + JGR)3 (oE +dJog + Icfc)3 {og + Joﬁ + (I +1J + t)cgr

I'W3 IW4

2 - 2 2 L J62 + Io2
(og + 100)2 (GE +Jog + 100)2 {opz; +Jok + (I +1J + 1)02]2

(I + IJ + 'r)-W5

LW LW 2(1 +1J + x).wm

+7 2.3t 2 2 23
(OE + Ioc) (GE + JUR + IO’C)S [0’% + Jolzl + (I + IJ + T)O'(z:J 3
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APPENDIX L
ANALYSIS FOR TYPE 2 DATA SET

Section L.1 presents the analysis for approximating the integral in
the column variance dimension when the mode is at the zero boundary.
Section L.2 presents the derivation of the objective function and its first and

second derivatives which are used in the optimization subroutine.
. . : 2
L.1 Apply Equation (5.7) to Expression (5.6) With Respect to o¢

When the mode of the column variance is at the zero boundary,
Equation (5.7) is applied to Expression (5.6) with respect to the column
variance.

- g(ﬁl?i» S5 0%)

2 2 2 2
Ig (OR’ Oc OE) doC =
0

d ] 2 2 2
-—-——a(o%) 0, g((fn, Co» GE)] °c2=0

From Expression (5.6), let



2 2 2
g = g(on Co OE)

2\-W1 9 2\-W2 9 2,-W3 , 2 2 2, - W4
= (O'E) (GE + JOR) (oE + Icc) (O’E +Jog + Ioc)
- W5
x[o?.;-&-JG%-f-(I +1d + 1)0(2;] exp[- er - 2W7 2}
Ok O + JUR '
W8 W9 W10

XeXP| Ty T2 g2 T2 T 2 5
Gg+10c GCpg+dOr+10c oE+JoR+(I+IJ+t)oc

Evaluating g at og =0,

-Ww1 -W2 -W3 - W5

2 2 2 2\-W4 2 2
gloc’=o = (og) (oE+JoR) (GE"'JGR) (GE+J°R)

(%)

W7 W8 W9 W10
Xexpl-— g "3 2" 2 " 2 2 "2 2
Op Op+dJOog O Og+dogp Op+dJog

Cg O + 2

2\ - (W1+W3) 9 2. - (W2 + W4 + W5) W6+W8 W7+W9+W10
= ( ) ( JOR) exp - s o |-
OF og + Jog

The first partial derivative of log(g )with respect to 0(23 is used in the

denominator. Taking the logarithm,



)

= - Wl-log(o%) . Wz’log(oﬁ + Jog) - W3-log(o§ + 103)

- W4-log(of; + Jo;zz + 10(23) - W5-log[012.3 + Joﬁ + (I +1J + t)o%]

W6 W7 = W8 W9
og 0§+Jo§ csi;o‘;+1csicZ 0%+Jo§+log

) W10
61.2:+Jo§+(1+ IJ+1)0(23

dloglg

2
aO'c

Taking the derivative,

LW 3 I.W 4 (I+IJ+T,)W5

T2 272 -2 - 2°
op +Ioc  op +Jog + Ioc o§+Jo§+(I+IJ+t)cg

LW 8 LW9 G+ IJ + t|W10

(oE + I(Sc)2 (GE +Jog + I°C) [012.: +Jop + (I +1J+ ")og]z

Evaluating the derivative at og =0,



IW3 LW4 (“IJ ”)W5 IW8  ILW9

= - - + +
og og + Jo;zz o% + Joﬁ (012,3)2 (og + Jo;";)2
(I + 1d + t)WlO
+
(of; + Jo}%)z
) I W3 W4 + (I +1J + T)W5 . I.W8 . IW9 + (I + 1J + 1)W10
os oz +Jos (o%)z (o% +J oﬁ)z

Combining these results for the approximated integral,



2 2 2
g(ﬁc’ OR.» oE)

d

' a(oﬁ)

2 2 2
lo g(oC,GR, O’E)] 5220

2y-(W1+W3) 2 2. - (W2 + W4 + W5) W6+ W8 W7+W9+WI10
= (O’E) (OE +4d OR) exp; - 2 ) 2 2
O op + Jog
\1
(I-WB I-W4+(I+IJ+1 5
2 *t 2 2
O og + Jog
x
LW I-W9+(I+IJ+1 10
N )

~r 2 2
= g(OR, GE) say.

L.2 Apply Equation (5.9) to Z With Respect to o2 and o>
1

When the modes of the row and error variances have positive values,
apply Equation (5.9) to the result from Step 1 with respect to the row and

error variances.

- exp{- log{g(oﬁ, oﬁ)‘l]}

~, 2 2 2 ., 2
j Og, Op \dog dop = . .
0 0'[ ( R E) RTVE det (H) 12 082 = 032 , o’ - 052

2
where o, * denotes the mode, and H denotes the (2x2) matrix with (i, i)

elements



1

8210g[g(c§, oﬁ)’l]

i,je {R,E}.

OR 2 N

2., - (W2 + W4 + W5) [ W6+W8 W7+ W9+ W10
dJ exp| - 2 5
) O Og + Jog

I W4 + (I +1J + 'c)WS \'1

2
Og

I.-W3
+

rwg WO+ Q +1J + 1:)W10

2 2
O + JOg

N W1+W3 o 9. W2+ W4 +W5 W6+WS8
= (oE) (oE + JGR) exp 5

()

Taking the inverse, g

2 2\ 2
(oE + JOR) J

1

W7+W9+W10
2 2
Of og + Jop

I W4 + (I + IJd + 1)W5 \

2 2
og + Jog

I-W9+(I+IJ+1 10

(oﬁ + J(rfz)2 J
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Taking the logarithm of the inverse, log(g-l)

= (Wl + W3)log(o§) + (W2 + W4 + Ws)log(cf: + Jo%) , Ve +2W8
Ok

(+ 1ws I-W4+(I+IJ+1: 5 )
652; o§+Jog

W7+ W9 + W10
+ 5 + log

2
Op + Jog

I.W8 IW9 + (I +1J + t)WlO
- 2N2 2 2.2
\ (GE) (O'E +d O’R) ]

-1
The first partial derivatives of log(g ) are used in the optimization

subroutine.
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alog! g'1 )
(o)

J(W2 + W4 + ws) J (W7 + W9 + wm)
+

2 2 2 2
op + Jog (0E+J0R)2

J[I-W4 + (1 +1J + x)ws] 2J [st ‘ (1 +1 + c)wm]

+ +
2 2 2 2
(oE + JO’R)2 (O’E + Jon)a

( W4 + (I +1J + ‘C)W5 \'1

I.W3
+ +

2 2 J 2
O 0E+ Or

1. W9 + (1 +1J + r)wm

@) (s




(o)
W1+W3 W2+W4+W5 W6+W8 W7+WI+WI10
=+ 2 + 2 2 - g 2 2\ 2
GE GE + J GR (O'E) (GE +d GR)

. I-W4+(I+IJ+1)W5 )

) (og)z ) (o% +Jc§)2

9L W8 . Z[I-WQ + (I +1J + t)WlO]
() O

-1
( W3 I-W4+(I+IJ+1: 5 )
+ +

2 2 2
Og o + Jog

1. W9 + (1 +1J + r)wm

(R (R

-1
The second partial derivatives of log(g ) are used in the denominator

of the approximation and in the optimization subroutine.



a2log@
[a(oﬁ)] 2

J2 (wz + W4 + ws)
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2J2 (W7 + W9 + WlO)

(og + Joﬁ)z

(01_2; +Jo§)3

2J[1-W4 + (I + 10+ r)ws] 6J[I-W9 + (1 + 10+ x)wm]

+

(

IW3
+

(o% + Jc§)3

W4 + (I +1J + I)WS A%

2
Cg

+ 2

2
o + Jog

I W9 + (I +1d + t)WlO

J[I~W4 + G+ IJ + 1:)W5] 2J[I-W9 + (I +1J+1 10]

(of; + Jo}%)z

(cf; + Jog)“

J

2

(o% + Joﬁ)2

(

I'W3
+

+

1 W4 + (I +1J + t)W5 \?

(o%+Jo§)3

2
Og

I.W8

+ 2

2
og + Jog

I.W9 + (I+IJ+1 10

()

(cf; +Jo§)2

y



J (wz + W4 + ws) 2J (W7 + W9 + wm)

+
(o?; +Jo;2¢)2 (0P2;+Jo§)3

2J[1 W4 + (I +1d + 'c)WS] [1 W9 + (1 +1d + 't)WIO]

+

(GE + JO’R) (of; + Joﬁ)“
( I.W3 IW4+(I+IJ+1 5\'1
+7 2
O +JoR

IW9 + (I + 10+ 1)W10
O )
J[I W4 + (1 + 1T+ z)ws] [1 W9 + (1 +1J+ 1)W10]

U S

( Lwa IWa+ (I +1J+ z)ws )
. (0,23)2 - (012.3 + Jo§)2
ows  2[EWo (1+19+ x)wm]

L () ()




( 1. W4 + (1 +1J + 'c)WS )2

I-W3
+

2t 2 2
Op O + Jog

W9 + (I +1J + x)wm

@) (e

2 (ws + ws) 2 (W7 + W9 + wm)

) W1+ W3 ) W2 + W4 + W5

+ +
(og)z (of; +J o%)z (012.3)3 (01.2; +d o§)3
( oLW3 2[I-W4 + (1 +1J + z)ws] A

+ +
GRS

cows  6/1W9 + (1+19+ z)wm]

\- (0;23)4 - (o§+Jo§)4 J

-1
(+ I.W3 , I-W4+(I+IJ+1 5\
6}23 o§+Jc§

Lwg W9+ (1 +1J+ z)wm

N O




I-W4+(I+IJ+1 5 )

)2 ) (og + Jo§)2
z[l-wg + (1 10+ :)wm]

+
(01.23 +Jo§)3 )
1ws I-W4+(I+IJ+1 5 )
0% o% +Jo§
W8 IW9 + (I +1J + ‘t)WlO

L@ e
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APPENDIX M
ANALYSIS FOR TYPE 3 DATA SET

Section M.1 presents the analysis for approximating the integral in
the row variance dimension when the mode is at the zero boundary.
Section M.2 presents the derivation of the objective function and its first and

second derivatives which are used in the optimization subroutine.

M.1 Apply Equation (5.7) to Expression (5,6) With Respect to 6=

2 2 2
oo g(cRr Cc, GE)
2 2 2 2
jg Op, O, O |dOR = 3
0 ] 2 2 2
- 2 0 g(GR’ Cc OE)] 2_¢

a(on)

Q
"

From Expression (5.6), let

2 2 2
g = g(on, OG OE)

- (o;';)

-wW1 - W4

-W2 -W3
(of; + Jcﬁ) (01_2; + 102) (of; +Jos + Iog)

2 2 2|-W5 W6 W17 W8
X oE+JoR+(I+IJ+t)oC expl-—5 -3 2 - 2 2
op og+dogp o+ Iog

W9 W10
x exp| - .

2 2 2
og +Jog + Ioc of;+Jo§+(I+IJ+t)o(2;

Evaluating g at og =0,



gls20

2.-W1 , 2.-W2 o

- W3 “W W5
= (O’E) (O'E) (O’E + Icg) (012.3 + Iog) ! [of; + (I +1J + t)og}

W6 W7 W8 W9 W10

Xexptt2 T 2 T2 2T 2 2T 9
Op) O Op+lil0c GCg+i0c oE+(I+IJ+r)oC

2.-(W1+W2) 2 9. -(W3+W4q)| o 2]-Ws
= (UE) (GE + IGC) Of + (I +1J + r)oc

W6+ W7 W8+ W9 W10
xexp| - 2 - 2

9.
o og+log o§+(I+IJ+z)o§

Taking the logarithm, log(g )

= - Wl-log(og) - W2-log(012.3 + Joﬁ) - W3-log(o% + Iog)

- W4-log(o§ + Jog + Iog) - W5-log[o§ + Joﬁ + (I +1J + t)og}

W6 W7 W8 W9

2 2 2 " 2 2" 2 2 2
o op+dog o +log o+ dJdog+log

) W10
0§+Jo§+(1+ 1J + t)og

The first partial derivative of log(g )with respect to cg is used in the

denominator;



alog!g )
o)
J-W2 J-W4 JW5

) 2 - 2 2 2 "
op +dJop op +Jog + Ioc o§+Jo§+(I+IJ+t)og

J-W7 J-W9 J-W10

+ 5o + _ +
(cf; +JOR)2 (oﬁ ¥ Jo% ¥ 102)2 [012; + Jo;zz + (I +1J + t)oﬁ]z

Evaluating the derivative at cg =0,

alog! g )

a(o%) °R2 =0

JW2 J-W4 J-W5 +J-W7 . J-W9
=T 2 T 2 2 - 2 2
g op+loc 24 (I +1J + 'c)og (033)2 (CE + 100)2

J-W10
[0,2; + (I +1J + 1)0(23] 2

Combining these results for the approximated integral,

+



2 2 2
g(oc, Or» GE)

0 ] 2 2 2
ey e ) e

o\-(W1+W2) 2 _ 2 -(W3+Wa)[ o 9]-Ws
= (GE) (oE + Ioc) op + (I +1J + 1:) o

W6+ W7 W8+ W9 W10
x exp| - - g 2 " ;
O og + loc oE+(I+IJ+t)oC
( JW2  JW4 JW5 \!
+—5 + +

2 .2
CE og + Iog o§+(I+IJ+t)o(23

J-W7 J-W9 J W10

(GF)7 (cE+ 108 [o§+(I+IJ+t)O<2:]2 )

\

M.2 Apply Resul gz Wi o2 and of
. ol )]
I f ~(o<2;, Gf;) dozdot = 7 ,
0 0 det (H) °c2 - °c2.» 052 - 052.

2
where o * denotes the mode, and H denotes the (2x2) matrix with (i,j)

elements



Let

~, 2 2
g = g(oc, GE)

. w2 - (W3 + W4 -W5
= (of;) Wie )(0,23+Io(2:) W3+ )[c§+(I+IJ+t)og}

W6+ W7 W8+ W9 W10
x exp| - 2 T2 27, 2
O og + Ioc oE+(I+IJ+'c}C
( NEACRAL JW5 !

2 Y2 12t 9
O Gg + 10c oE+(I+IJ+t)oc

J-W7 J-W9 J-W10

\

("%)2 - ("; + I"%)z [of, + (1 +1+ z)o%]z )

Taking the inverse,

i,je {C,E}.



1

g = (02)

(W1+W2) o

(GE + Ioc)

W6 + W7
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W3+ W W5
2, (W3 + W) (I+IJ+1)0€]

[ 2
O +
W8 + W9 W10

2
O

X exp[+

( , w2

2 152 T 2
Cg + 10c 0E+(I+IJ+t)oc

J-W4 J-W5H

\

2
O

J-W7

+

2 2
og + Ioc o%+(I+IJ+1)o<2;

J-W9 J-W10

\

- (03:)2 - ("% + I°?=)2 [o§+(1 +17 + 1)02]2)

-1
Taking the logarithm of the inverse, log(g )

= (Wl + W2 )log(of;) + (WB + W4 )log(o% + Iog)

+ W5-log[of3 + (I +1J + t)n%] + W6 +2 w17 W28 +W3
O O + Io'c
W10
Y 2
cE+(I+ IJ+1)0C
[ JW2 JW4 J-W5 )
T2 Y212 2 9
O Cg + 10c 0E+(I+IJ+1)0C

+log

J-W7 J W9 J-W10

\ (033)2 ("%”"3)2 {o§+(I+IJ+t)og]2

J



LilL

-1
The first partial derivatives of log(g )are used in the optimization

subroutine.

alog! g.l '
(%)

I-(W3 + W4) il +1J + ‘C)W5 1-(ws + W9)
+

=t 2 2 . 2
og + log of;+(I+IJ+t)og (0E+Ioc)2

(1+IJ+1 W10

l:o%+(I+IJ+t)ogr

( W4 (I+IJ+1)J-W5 A
- (Gg + I°<23)2 - |:o% + (I +1J + 1)03]2

2(1 + 1J + t)l-WlO

21J-W9

tT 2 23 *
K (°E+I°C) l:cg+(I+IJ+t)o(2;}3

(,dW2 _JW4 JW5 1
2

2 12+ 2 2
OF O + 10¢ oE+(I+IJ+t)oc

J-W7 J-W9 J-W10

\

CRGE e 1)03}2)



I-(WS + W4) (1 +1J + T)ws I-(ws + WQ)

2 2t T2 2.2
o + Ioc og+(I+IJ+1)7g (0E+IGC)

(I +1d + t)WlO

{c§+(l +1J + t)cgr

W4 Q+IJ+1 ws )
- 5y
(°E+I°C) [012.;+(I+ 1J +1)og]2

2£I+IJ+1 W10

,_2Lwe
2 2\3
\ ("E + I"C) [oﬁ " (I +1J + 1)02}3

( W2 W4 W5
+—5 +

2 12+ 2 2
o o +Iog oE+(I+IJ+t)oc

W7 W9 W10

\ (0»2:)2 ("!2'3 + I°?~‘)2 [of; N (I +1T+ r)og]z

J



alog! g'1 ’
8(0;2;)

W1+ W2

W3 + W4 W5

) W6 + W7

W8 + W9

= 2
O

Y1 | 2 2
O + 10¢ 0E+(I+IJ+1)UC (GE

2

W10

)2 ] (of; + 102)2

[o% + (I +1J + 1)02]2

([ JwW2  JW4 J-W5 )
N 2\2 °
("E) (OE * IOC) [o% + (I +1J + t)o?,] 2
+
. 2J-W7 . 2J-W9 . 2J-W10
2\3 2 2.3
((’E) (OE + IOC) [o% + (I +1J + 1)0(2;} 3
[ JW2  JW4 JW5 A%
tT 2 vt 2 12 T 2 2
O O + 10c oE+(I+IJ+T)oC
X
J-W7 J-W9 J-W10
T2 a2 2y2 °
(GE) (GE * IGC) [of; + (I +1J + 'c)ogJ 2

\

J



Wi+W2 W3+W4 W5 ) W6 + W7 W8 + W9

= 2 T2 2 t 2 2.2
e o +Ioc o 4 (I +1J + t)o?; (012‘:)2 (UE + IGc)

) W10
[012.3 + (I +1J + t)ogr
( w2 W4 W5 \
) 22-02+1022- 2 2|2
(OE) ( E C) |:OE + (I +1J + t)UCJ
+
.\ 2.-W7 s 2.-W9 . 2-W10
2\ 3 2 2.3
(OE) ("E + IGC) {cﬁ + (I +1J+ 1)0(2;]3
( w2 W4 W5 1
+— 5+

2 12+ o 9
O O+ iGc oE+(I+IJ+t)oC

W7 W9 W10

\' (2 (oo+100) [2 (ews T)Ugr )

-1
The second partial derivatives of log(g ) are used in the denominator

of the approximation and in the optimization subroutine.
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12-(W3 + W4 ) (1 +1J + 1)2-W5 212.(ws + W9 )

2 2 + 2 2.3
(o8 + To%)’ [ ey )o] (6 + 1oc)

2(1 +1J + ‘C)Z-WIO

+

(

\

+73 2.3 t
(°E+I°C) [012.3+(I+ IJ +t)c(23}3

[cf; + (I +1J + t)og]a

2(1 +1J + z)z-ws A

212 W4

612 W9 6(1 +1d + 1)2-W10

T, 2 2\ 4
(°E+I°C) [o%+(I+IJ+1)a<2;]4

(eré‘z+ W4 W5 \

2 12+ 2 2
O Og+i0c oE+(I+IJ+1)oc

W7 W9 W10

\ (%) (o8 + oo’ [ (1w )o]

J



(

+

\

I.W4

40

(I +1J + 1:)W5 \,

2 2\2 7
(GE + Ioc) [o% + (I +1J + 1:)0(23]2

2I.-W9

2(1 +1J + z)ww

(e foc)° ' [of; +(T+1+ r)oﬁ]s )

/

W2 W4 W5 \.z
tT+t 2 ¥, 2
og ©op+loc GE+(I+IJ+1)UC

W7 W9 W10

g

2

03)2 - (U% + Ioczz)2 [of; + (I +1J + 1)0?‘;]2 )




I-(W3 + W4 )

(1 +

204

IJ + 1)W5

2. W8+W9)

(o% + 103)2 [

2
0E+(

5+
I+IJ+t)og:|

2(I+IJ+1 W10

+

(

\

21 W4

{of; + (I +1J + 1)03]3

2(I+ IJ+1)W5 \

61-W9

+7 2 2.3 T
(°E + IOC) [cf; + (I +1J + t)cg] 3

6(1 +1J 4 x)ww

(of; + 102)4 [

(L

of;+(1 +1J + 1)0%]4

W4 W5

(012.3 + 10%)3

Op

2 2 v, 2
og + Ioc oE+(I+IJ+1)oc

W9 W10




+

\

(.

2(8

W2 W4 W5 \
212 (6% L 162\ [ 2 2)2
(GE) ( E C) [OE + (I +1J + 'c)ocJ
2. W7 2-W9 2:-W10

(05)3 ' (o§+lo?;)3 ' [o%+(I+IJ+t)og]3)

( 1.W4

(I+IJ+1 ws )

2I-W9

-, 2 2.2
(GE+I°C) [o§+(I+IJ+t)og]2

2(1 +1J + r)WlO

+

\

W2

(G§ + 10?:)3 ' [012.;+(I 10+ 1)03]3)

W4 W5

(.

5+
O

W7

2 102 | 2 2
Cg + 10c oE+(I+IJ+1)oC

W9 W10

\

TN T 2 2\2
(OE) (CE * IGC) [01,2; + (I +1J + t)ogr

J



W3 + W4

&Ll

W5

2(W6+W7)

_ W1+ W2

2(ws+wg)

2N2 [l 2\2 ° +
("E) (GE + IOC) I:c?.;+ (I +1J + t)og]z

2W10

(=)

2 1 2.3 T 3
(OE + IOC) [og + (I +1J + t)og]

2-W2 2-W4 2-W5 )
toast oz et 213
(UE) (OE + OC) [OE + (I +1J + t)uc]
+
6-W7 6-W9 6-W10
T2\ 2 2\4 1.
(GE) (GE + IGC) [oé + (I +1J + t)cg] ! )

\

( +w:a+ 2W4

W5

\-1

W7

2 2
og  og+Iog o§+(1+1.1+z)oi

W9

+

W10

\

(

2

GE)Z - (0}2: + 10%)2 [of: + (I +1d + 1)0(2{,2
| y




\

(W2

W4

W5

+—

2\ 2 2 2\2
()" (oz+1o¢) [GE (1413 )o]

2-W7

2-W9

2-W10

(

+ +
273 2 2\3
OE) (OE + IOC) liof_, + (I +1J + t)yg] ’ )

(

\

W2 W4

W5

\-

+

+
2 2 2
og O+ Iog

W7 W9

+

o§+(I+IJ+'c)og

W10

2
&

)2 - ("g + I°<2>)2 [oé + (I +1J + 1)03]2 )
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APPENDIX N
ANALYSIS FOR TYPE 4 DATA SET

Section N.1 presents the analysis for approximating the integral in
the row variance dimension when the mode is at the zero boundary.
Section N.2 presents the derivation of the objective function and its first and

second derivatives which are used in the optimization subroutine.

N.1 Apply Equation (5.7) to Z With Respect to o7
w é(on, O’E)
~ 2 2,2
f g (Or, og\dog = .
0 -—a—lo 22, o2 .
80}21 ( R E) O =0

Letg = é(oﬁ, 0123); see Appendix L.1 for derivation of this result.

O + JOR 2 - 2 2
GE O + JGR

2\-(W1+W3) o 2. -(W2+ W4 + W5) W6+W8 W7+W9+WI10
g = (UE) ( J ) exp| -

(I-W3 , I-W4+(I+IJ+1 5 \?

2 2 2
O og + Jog

LW I-W9+(I+IJ+1 10

@ (@

Evaluating g at cg =0,




g |

O’R2=0
2\ - (W1+W3) , 9, -(W2+ W4+ W5) W6 +W8 W7+W9+ W10
(e ) e B ML
Og O
( Lwa  IWa+ (1 +1J + x)ws \"
+ g+ g
O O
X
LW I-W9+(I+IJ+1 10
() C
) W6 + W7 + W8 + W9 + W10

(

(c

2 - (W1 + W2+ W3+ W4+ W5)
GE) ex

2
O

|

I W3 + 1. W4 + @ 1J + z)ws I W8 + W9 + (1 +1J + 1)W10 1

X

E

X

2
O

2)-(W1+W2+W3+W4+W5-2) pI:
ex

) W6 + W7 + W8 + W9 + W10

(cf:

)

2
O

[1W3 + 1w + (1+13+ z)ws](oi) 1

|

-[I-WS + I-W9 + (I +1J + t)WlO]
The first partial derivative df Iog(g )withl respect to cg is used in the

denominator of the approximation. Taking the logarithm, log(g )



W6 + W8

= - (Wl + w3)log(o§)- (wz + W4 + W5)log(012; +J oﬁ)- —
Cg

( I-W4+(I+IJ+1:)W5\

IW3
TE T Rl
W7 + W9 + W10 5
) 02 +J0’2 - log
E R
I.W8 IW9 + Q+ IJ + 1 W10

G

alog!g \!

Taking the derivative, 5
()

J (wz + W4 + ws) J(W7 + W9 + wm)

o 012.3+Jo,2; * (c§+Jo§)2
I[1we + (1 +10+ x)wsJ 2| TW9 + (1 + 10+ x)wm]
N (0123 + Jo§)2 ¥ (0;93 + Jo%)a

I-W4+(I+IJ+r 5 )

IW3
+T 2t 2 2
O o + Jog
X
Lwa W9+ @» 1J + W10
@ e



Evaluating the derivative at 012; =0,

alojgj g ]

8(0;21) 6.2=0

J(wz + W4 + ws) J (W7 + W9 + wm)

= - ) + 2
g ()

J[I-W4 + @ 1J + ‘c)WS] 2J[I-W9 N (I 10+ r)wm]
- +

Sl ()

( Y
1. W3 IW4 + (I +1J + T)W5
tT ot 2
O O
X
W8 I-W9+£I+IJ+1: 10
T2 2
() =
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= -J (wz + W + ws) (01.2;)'1 +d (W7 + W9 + wm) (oﬁ) 2

) ( J[I.w4 + (I +1J + x)ws]- W9 + (I DI s 1)W10](o§)-1 J
)

i (+ [I-W3 +1W4 + (1 +1J + x)ws](oﬁjq 1
x -[I-WS + 1W9 + (1 +1J + 1)W10]
()
=-J (wz + W4+ ws)(cﬁ)" +d (W7 + W9 + wm)(of.;)'?
[ +3[1Wa + 1+ IJ+1)W5] J
N 2J[1-W9 N (1 +1J + z)wm] (012.3)'1
(« [I.WB + IW4 + (I 1+ x)ws] (of;)}

-[I-WS + I-W9 + (I +1J + t)WlO]
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+ [I-WB +1W4 + (I +1J + T)WS] (c%)
J (wz + W4+ ws) (o;‘;)"
1ws + 1Wo + (1 + 17+ z)wm]

(» [I-WB + I W4 + (1 L1+ r)ws] (og)J

~[1-ws + W9 + (1 1T+ 1)W10]

+[1W e TWa 4 (14154 t)W5] o
J (W7 + W9 + wm)(og)-{ ( )}

E [1-ws + I W4 + (1 +1J + 1)W5] (og)]

-[I-WS +IW9 + (I +1J + t)Wlo]

[ +J[I-W4 + (I+IJ+¢)W5] )
-\ 20[1W9 + (1+1+ r)WlO] (og)-l
(+ [1W3 + 1W4 + (1+1+ 1)W5] (og)]

-[st + W9 + (I +1J + z)wm]

-[I-ws + W9 + (1 +1J + r)Wlo]
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[+ J (wz +Wa + ws)(oﬁ)" [I-W3 +1W4 + (1 +1J+ t)W5] (of;) ]

-J (wz + W4 + ws)(oé)‘l [I-ws +IW9 + (1 +1J + z)wm]

[+[I-W3 + TW4 + (I P10+ 1)W5] (oi)]

-[st + W9 + (1 +1J + z)wm]

[+ J (W7 + W9 + wm)(oﬁ)-z[l.ws +1W4 + (1 +1J + x)ws] (oﬁ)]

-J (W7 + W9 + wm) (oﬁ)'z[l-ws + W9 + (1 +1J + z)wm]

£+ [1.w3 + W4 + (I +1J + *c)WS] (o%))

-[I-WS + IW9 + (I + 10+ z)ww]

( +J[I-W4 + (1+ IJ;z)ws] ]
+ : 2J[I-W9 + (I +1J + z)wm] (012;)'1
[+ [I.WS + W4 + (1 + 10+ z)ws] (G%)J

-[I-WB + W9 + (1 +1J + x)wm]




(. +3(W2Was W511-W3+I-W4+(I+IJ+ x)ws]
-J(W2+W4+ W511.W8+I-W9+(I+IJ+ ‘c)WlO](o%)’l
-J(W7+W9+ WlOII-W3+I~W4+(I+IJ+ t)WS](og)'l

+J(W7+W9+ WIOII-W8+I-W9+(I+IJ+ z)mo](of;)"’-

~J[I-W4+ (I+IJ+ t)WS]
\+2J[I-W9+(I+IJ+ t)WlO](og)'l

+ [I.W3 + W4 + (I +1J + t)WS] (o;‘.;) 1

1w + w9 + (14134 x)ww]

X
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Combining these results for the approximated integral,
~ 2 2
i+

o log{g o2 02 ]

- R> YE 2_

ek L fio

(o -(W1+W2+W3+W44+W5.2) xp[ W6+W7+W8+W9+W10]

2
Og

[I.W3 + W4 + (I +1J + 1)W5] (of;) 1

-[I-WS + W9 + (I +1J + ‘c)WlO]

X

(. +3(W24Wa+ W511-W3+I-W4+(I+IJ+ z)ws] )
-J(W2+W4+ WSII-W8+I-W9+(I+IJ+ x)wm](of;)'l
J(WrWos WIOII-W3+I-W4+(I+IJ+ x)ws](cﬁ)l
+J(W7+W9+ WIOII-W8+I-W9+(I+IJ+ t)WlO](of;)

_J[I.w4+(I+IJ+ ‘C)W5]
\+2J{I-W9+(I+IJ + t)WlO](U%)'l )

+ [I-W3 +IW4 + (1 +1J+ :)ws] (012;3)

-[I-WS +1W9 + (1 + 10 + x)ww]




2y-(W1+W2+W34+W4+W5-49) W6 + W7 + W8 + W9 + W10
- () )’ 2 ]
Or

(43 (W2+W4+W5)[I.W3+I-W4+(I+IJ ¥ r)ws](cﬁ)z\
] J[I.W4+(I+IJ + t)WS](o%Y

i J(W2+W4+W5)[I-W8+I-W9+(I+IJ + x)W1o](o§)

i J(W7+W9+W10)[I-W3+I-W4+(I+IJ + z)ws}(oﬁ)

+ 2J[1-W9+(I+IJ + t)WIO](o%)

\* J(W7+W9+W10)[I-W8+I-W9+(I+IJ + t)WlO] }

= 9
= g(og} say.
N.2 Apply Equation (5.8) to g With Respect to o5

dad - L
0 { (aig)z l°g[§(°§)°l]}m o=

2 * .
where o denotes the mode of the error variance. Let




i/ A

= 2

(02 -(W1+W2+W3+W4+W5-4)exp|: W6+W7+W8+W9+W10}
= E) -
O

(& J(W2+WAWS)| LW3+1-Wa+ (1414 + x)ws](oﬁ)z\
: J[I-W4+(I+IJ + x)vs](oﬁ)z

- J(W2W4+W5)| T W8+1- WO+ (1417 + x)wm](cé)
: J(W7+W9+W10)[I-W3+I-W4+(I+IJ + x)ws](c%)

" 2J[I-W9+(I+IJ . r)WlO](OE)

\* J(W7+W9+W10)[I-W8+I-W9+(I+IJ + r)wm] )

Taking the inverse,

g =6 2

-1 ( 2 (W1+W2+W3+W4+W5-4)exp|:W6+W7+W8+W9+W10:l
)
O

(4 J(W2+W4+W5)[I-W3+I-W4+(I+IJ + x)ws](of;)z\
} J{LW4+(I+IJ + ‘C)W5](0'12.3)2

: J(W2+W4+W5)[I-W8+I-W9+(I+IJ + t)WIO](cf:)
. J(W7+W9+W10)[I-W3+I-W4+(I+IJ + t)W5](o§)

+ 2J{I-W9+(I+IJ " r)ww](oﬁ)

X J(W7+W9+W10)[I-W8+I-W9+(I+IJ + t)WlO] )




in) Lt

Taking the logarithm of the inverse,
)
2

- (Wl+W2+W3+W4+W5-4)log(og)+ W6 + W7 + W8 + W9 + W10

2
O

(+ J(W2+W4+W5)[I-W3+1-W4+(1+1J + x)vs](og)2\

- J[I.W4+(I+IJ + r)ws](of:)z

: J(W2+W4+W5)[I-W8+I-W9+(I+IJ N x)ww](of;)
+ log
. J(W7+W9+W10)[I-W3+I-W4+(I+IJ + x)ws](oﬁ)

. 2J[I-W9+(I+IJ " x)Wlo](ofz)

\* J(W7+W9+W10)[I-W8+I-W9+(I+IJ + 1)W10:| )

-1 . e e s .
The first derivative of log(g )is used in the optimization subroutine.



dzog(g'l)

d(oﬁ)

. W1+W2+W3+W44+W5-4 ) W6 + W7 + W8 + W9 + W10

) 2
og (oE)z

- 2J[1-W4 + (1 + 1 + z)W5] (o;‘;)
+|-J (wz+W4+W5)[1-ws +1W9 + (I + 1+ x)wm]
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The second derivative of log(g-l) is used in the denominator of the

approximation and in optimization subroutine.
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APPENDIX O
APPROXIMATION ANALYSIS PROGRAM

Table O.1 - Ingut / Outgut Device Desigation

# Use Description

1 Input Sample Sufficient Statistics

5 Input *SOURCE*

6 Output *SINK*

7 Output Log of Screen Displays

8 Output Bayesian Predictive Distribution
9 QOutput Comparable Distributions

ChAh kA kA AR KA A AR KA AR A AR AR AR AR R AR R AR A A AR R ARk Ak kAR A A AR AR ARk kA Ak k&

C main program for Bayesian analysis of 2-way REM model,

C posterior distribution of new row mean
Ct*****************************************t*******************

C wvariable definition

o X(l) = row variance, sigma (r)
C X(2) = column variance, sigma(c)
C X(3) = error variance, sigma(e)

CARA AR AR AR KRR AR R A AR AR KR AR R AR AR RN AR AR K KRR A RR AR AR R KRR AR R AR Rk k& K X
PROGRAM BAYSRM

REAL*8 I,J,MU,SSC,SSE,SSR,TAU,W(10),YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W, YDOTDT
REAL*8 MEAN (2) , STDDEV (2) ,PMF (201, 2) ,NEW(201)

COMMON /OUT/ MEAN, STDDEV, PMF, NEW
REAL*8 CHUNK
INTEGER TYPE
CALL ERSET(3,0,-1)
g get prior paramters and sample data
© CALL INPUTS
C calculate moments for sampling theory predition distribution
CALL SMPDAT
C calculate posterior moments
CALL MOMNTS (TYPE)
g estimate posterior marginal dist'n of new row mean
C

CALL ESTMAT (TYPE, CHUNK)

C print selected percentiles of distributions



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

OO0

(@]

CALL PRCNTL
write comparable distributions to file
CALL COMPAR (TYPE, CHUNK)

SToP
END

C*-k*i****i*******************************t*********************

C

subroutine to calculate posterior moments

C********t***********k'k******************t*********************

C

OO0

o000

[oNeNe!

SUBROUTINE MOMNTS (TYPE)

REAL*8 1,J,MU, SSC, SSE, SSR, TAU,W(10) , YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W,YDOTDT
REAL*8 MEAN (2), STDDEV (2) , PMF (201, 2) ,NEW(201)

COMMON /0UT/ MEAN, STDDEV, PMF, NEW
INTEGER IP(7),TYPE
REAL*8 CHUNK,DETERM, DETDEN, DETNUM, LFIDEN, LFINUM,RP (7),
& G(3),S(3),H(3,3),X(3),LB(3),UB(3)
EXTERNAL DETERM, GRAD1, HESS1, LFNC1
calculate posterior mean
MEAN (1) = (I*J*YDOTDT+TAU*MU)/ (I*J+TAU)

calculate standard deviation

W(l0) = 0.DO

§(1) = 1.00
S(2) = 1.D0
§(3) = 1.D0

=> for numerator

W(5) = -1.DO0

G(3) = SSE/((I-1.D0)*(J-1.D0))

G(1) = (SSR/(I-1.D0)-G(3))/J

G(2) = (SSC/(J-1.D0)-G(3))/1

IP(1) = 0

CALL DBCOAH (LFNC1,GRAD1,HESS1,3,G,1,LB,UB,S,1.D0, IP,RP,
& X, LF INUM)

WRITE(6,*) 'num °*',X

IF (X(1).GT.0.D0) THEN
IF (X(2).GT.0.D0) THEN
TYPE = 1
CALL HESS1(3,X,H,3)
LFINUM = -LFINUM-0.5D0*DLOG (DETERM(H))
ELSE
TYPE = 2
CALL ESTIM2 (X (1),X(3),LFINUM)
END IF
ELSE
IF (X(2).GT.0.D0) THEN
TYPE = 3
CALL ESTIM3(X(2),X(3),LFINUM)
ELSE



96 TYPE = 4
97 CALL ESTIM4(X(3),LFINUM)
98 END IF
99 END IF
100 WRITE(6,1) TYPE
101 1 FORMAT(/,' type = ',11,/)
102 c
103 C => for denominator
104 C
105 W(5) = 0.D0
106 G(1) = X(1)
107 G(2) = X(2)
108 G(3) = X(3)
109 IP(l) =0
110 CALL DBCOAH(LFNC1,GRAD1,HESS],3,G,1,LB,UB,S,1.D0, IP,RP,
111 & X, LFIDEN)
112 WRITE(6,*) 'den ', X
113 C
114 IF (X(1).GT.0.D0) THEN
115 IF (X(2).GT.0.D0) THEN
116 IF (TYPE.NE.1l) THEN
117 TYPE = 1
118 WRITE(6,2) TYPE
119 2 FORMAT (/, ' at var. den., type = ',Il,/)
120 END IF
121 CALL HESS1(3,X,H,3)
122 LFIDEN = ~LFIDEN-0.5D0*DLOG(DETERM(H))
123 ELSE
124 IF (TYPE.NE.2) THEN
125 TYPE = 2
126 WRITE(6,2) TYPE
127 END IF
128 CALL ESTIMZ2(X(1l),X(3),LFIDEN)
129 END IF
130 ELSE
131 IF (X(2).GT.0.D0) THEN
132 IF (TYPE.NE.3) THEN
133 TYPE = 3
134 WRITE(6,2) TYPE
135 END IF
136 CALL ESTIM3(X(2),X(3),LFIDEN)
137 ELSE
138 IF (TYPE.NE.4) THEN
139 TYPE = 4
140 WRITE(6,2) TYPE
141 END IF
142 CALL ESTIMA4(X(3),LFIDEN)
143 END IF
144 END IF
145 c
146 C calculate standard deviation using LaPlace estimation
147 C
148 STDDEV (1) = DEXP(0.5D0* (LFINUM-DLOG(I*J+TAU)-LFIDEN))
149 C
150 WRITE(6,77) MEAN(1l),STDDEV(1l)
151 77 FORMAT(/' Bayes mean = ',F30.10,/' st.dev = ',F30.10)
152 C

153 RETURN



154 END

155 vC*****i'k***'k*******************t****************************t**
156 C subroutine for estimation of posterior marginal distribution
157 C*t****t**it*************************************************k*
158 SUBRQUTINE ESTMAT (TYPE, CHUNK)

159 C

160 REAL*8 I,J,MU,SS8C,SSE,SSR, TAU,W(10),YDOTDT
161 COMMON /INN/ I,J,MU, SSC,SSE,SSR,TAU,W,YDOTDT

162 REAL* 8 MEAN (2), STDDEV(2) ,PMF (201, 2) ,NEW(201)
163 COMMON /OUT/ MEAN, STDDEV, PMF, NEW

164 INTEGER INDEX,K,L,IP(7),TYPE

165 REAL*8 CHUNK,DETERM, LFIX,OUT,RP(7),G(3),S(3),
166 & H(3,3),X(3),LB(3),UB(3)

167 EXTERNAL DETERM,GRAD1l, HESS1, LFNC1

168 C

169 W(5) = 0.5D0

170 S(1) = 1.D0

171 S(2) = 1.D0

172 S(3) = 1.D0

173 C

174 C estimate function at mean (y..)

175 C

176 NEW(101) = MEAN (1)

177 PMF (101,1) = 1.DO0

178 W(10) = 0.DO

179 G(3) = SSE/((I-1.D0)*(J-1.D0))

180 G(l) = (SSR/(I-1.D0)-G(3))/J

181 G(2) = (88C/(J-1.D0)-G(3))/1

182 IP(1) = 0

183 CALL DBCOAH (LFNC1,GRAD]1, HESS], 3,G,1,LB,UB,S,1.D0, IP,RP,
184 & X, LFIX)

185 WRITE(6,*)0,X

186 C

187 IF (X(1).GT.0.D0) THEN

188 IF (X(2).GT.0.D0) THEN

189 IF (TYPE.NE.1l) THEN

190 TYPE = 1

191 WRITE(6,1) 0,TYPE

192 1 FORMAT(/,' at ',13,', type = ',I1,/)

193 END IF

194 CALL HESS1(3,X,H,3)

195 CHUNK = -LFIX-0.5D0*DLOG (DETERM(H))

196 ELSE

197 IF (TYPE.NE.2) THEN

198 TYPE = 2

199 WRITE(6,1) 0, TYPE

200 END IF

201 CALL ESTIM2 (X (1), X(3),CHUNK)

202 END IF

203 ELSE

204 IF (X(2).GT.0.D0) THEN

205 IF (TYPE.NE.3) THEN

206 TYPE = 3

207 WRITE(6,1) O, TYPE

208 END IF

209 CALL ESTIM3(X(2),X{(3),CHUNK)

210 ELSE

211 IF (TYPE.NE.4) THEN



301

212 TYPE = 4

213 WRITE(6,1) 0,TYPE

214 END IF

215 CALL ESTIM4 (X(3),CHUNK)

216 END IF

217 END IF

218 Cc

219 C estimate function at 100 points up to 5 std dev around mean
220 C

221 DO 100 INDEX = 1,100

222 c

223 RINDEX = DFLOAT {INDEX) /20.D0
224 DELT = STDDEV (1) *RINDEX

225 W(10) = ((I*J+TAU)/2.D0)*DELT**2
226 K = 101+INDEX

227 NEW(K) = NEW(101)+DELT

228 C

229 G(l) = X(1)

230 G(2) = X(2)

231 G(3) = X(3)

232 IP(1) = 0

233 CALL DBCOAH (LFNC1,GRAD1, HESS1, 3,G,1,LB,UB,S,1.D0, IP,RP,
234 & X, LFIX)

235 WRITE (6, *) INDEX, X

236 C

231 IF (X(1).GT.0.D0) THEN

238 IF (X(2).GT.0.D0) THEN

239 IF (TYPE.NE.1l) THEN

240 TYPE = 1

241 WRITE(6,1) INDEX,TYPE
242 END IF

243 CALL HESS1(3,X,H,3)

244 PMF(K,1) = DEXP(-LFIX-0.5D0*DLOG (DETERM (H) ) -CHUNK)
245 ELSE

246 IF (TYPE.NE.2) THEN

2417 TYPE = 2

248 WRITE(6,1) INDEX,TYPE
249 END IF

250 CALL ESTIM2(X(1),X(3),0UT)
251 PMF (K, 1) = DEXP (OUT-CHUNK)
252 END IF

253 ELSE

254 IF (X(2).GT.0.D0) THEN

255 IF (TYPE.NE.3) THEN

256 TYPE = 3

257 WRITE(6,1) INDEX,TYPE
258 END IF

259 CALL ESTIM3(X(2),X(3),0UT)
260 PMF (K, 1) = DEXP (OUT-CHUNK)
261 ELSE :

262 IF (TYPE.NE.4) THEN

263 TYPE = 4

264 WRITE(6,1) INDEX, TYPE
265 END IF

266 CALL ESTIM4 (X (3),0UT)

267 PMF (K, 1) = DEXP (OUT-CHUNK)
268 END IF

269 END IF
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C => symmetric function has same value below mean/median

L = 101-INDEX
NEW(L) = NEW(101)-DELT
PMF (L, 1) = PMF (K, 1)
100 CONTINUE
C
C normalize function to proper probability distribution

CALL NRMLIZ (1)
WRITE (8,8) (NEW(K),PMF(K,1),K=1,201)
8 FORMAT(F15.6,'t',F9.6)

C
WRITE(6,3) MEAN(1l),STDDEV (1)
3 FORMAT(//,13X%," _ posterior mean = ',F12.4,
& /,13X, 'posterior standard deviation = ',Fl12.4)
C
RETURN
END

C*******************t******************t****i******t**i*t******

C subroutine for estimation of posterior marginal distribution
C type 2: column mode = 0; row and error modes positive
C*****t*******************************************t******t*****
SUBRCQUTINE ESTIM2 (G1l,G2,0UT)
C
INTEGER IP(7)
REAL*8 H(2,2),V{(2),LFIX,0UT,RP(7),S(2),G(2),LB(2),UB(2),
& Gl,G2
EXTERNAL GRAD2,HESS2, LENC2

1.00
1.D00

5(1)
$(2)
G(1) Gl
G(2) G2
IP(1) =0

"R o

CALL DBCOAH (LFNC2,GRAD2,HESS2,2,G,1,LB,UB,S,1.D0, IP,RP,
& V,LFIX)

CALL HESS2(2,V,H,2)

OUT = -LFIX-0.5D0*DLOG(H(1,1)*H(2,2)-H(1,2)*H(2,1))

RETURN

END
C****i****************************i********t*****t*************
C subroutine for estimation of posterior marginal distribution
C type 3: row mode = 0; column and error modes positive
C***ti****i****t*ti**************t*ttit*it*****t*ttttt***t*****

SUBROUTINE ESTIM3(G1l,G2,0UT)
(o4

INTEGER IP(7)

REAL*8 H(2,2),V(2),LFIX,0OUT,RP(7),S(2),G(2),LB(2),UB(2),

& Gl1, G2

EXTERNAL GRAD3, HESS3, LFNC3

1.D0
1.D0
Gl

SQ1)
S$(2)
G(1)
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329
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337
338
339
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345
346
347
348
349
350
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354
355
356
357
358
359
360
361
362
363

364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
3798
380
381
382
383
384
385

G(2) = G2
IP(1) = 0
C
CALL DBCOAH (LFNC3,GRAD3, HESS3,2,G,1,1B,UB, S,1,D0, IP,RP,
& V, LFIX)
CALL HESS3(2,V,H,2)
OUT = -LFIX-0.SDO*DLOG(H(1,1)*H(2,2)-H(1,2)*H(2,1))
c
RETURN
END

C*************i**t***tt**i**t***********t**********************

C subroutine for estimation of posterior marginal distribution
C type 4: row mode = column mode = 0; error mode positive
C*******t****t*******i*************i*t**ti*t*******************
SUBROUTINE ESTIMA4 (Gl,0UT)
C
INTEGER IP({(7)
REAL*8 H(1,1),Vv(l),LFIX,OQUT,RP(7),S5(1),G(1),LB(1),UB(1),Gl
EXTERNAL GRAD4,HESS4, LFNC4

G(l) = Gl
S(1) = 1.D0
IP(1l) = O

CALL DBCOAH (LFNC4,GRAD4,HESS4,1,G,1,LB,UB,S,1.D0,1IP,RP,
& V,LFIX)

CALL HESS4(1,V,H,1)

OUT = -LFIX-0.5D0*DLOG(H(1,1))

RETURN
END

ci**t*tti*t*it**ii*t*t**t*********i*i***ﬁ**t*******************

C subroutine for calculation of distributions for comparison
C**tﬁtt****tit****i**t*****i**********ttt*i**************t*****
SUBROQUTINE COMPAR (TYPE, CHUNK)
C
-REAL*8 I,J,MU,SSC,SSE,SSR, TAU,W(10),YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR, TAU,W,YDOTDT
REAL*8 MEAN (2) , STDDEV (2) ,PMF (201, 2) ,NEW(201)
COMMON /OUT/ MEAN, STDDEV, PMF, NEW
INTEGER K, IP(7),TYPE
REAL*8 HIGH(2),LOW(2),MAX,MIN,STEP,H(3,3),X(3),
& CHUNK, DETERM, LFIX,0UT,RP(7),G(3),S(3),LB(3),UB(3)
EXTERNAL DETERM, GRAD1,HESS1l,LFNC1

find endpoints of interval

OO0

LOW(1l) = MEAN(1l)-4.D0*STDDEV (1)
HIGH (1) = MEAN(1)+4.DO*STDDEV (1)
LOW(2) = MEAN(2)-4.D0*STDDEV(2)
HIGH(2) = MEAN(2)+4.D0*STDDEV (2)

IF (LOW(l) .LT.LOW(2)) THEN
MIN = LOW(1l)

ELSE
MIN = LOW(2)

ENDIF

IF (HIGH(1l) .GT.HIGH(2)) THEN



386 MAX = HIGH(1)

387 ELSE

388 MAX = HIGH(2)

389 ENDIF

390 STEP = (MAX-MIN)/201.D0

391 Cc

392 C estimate distributions for each point in interval
393 o

394 W(4) = 0.5D0

395 W(5) = 0.5D0

396 S(1) = 1.D0

397 S(2) = 1.D0

398 S(3) = 1.D0

399 X{(3) = SSE/((I-1.D0)*(J-1.D0))

400 X(1) = (SSR/(I-1.D0)-X(3))/J

401 X(2) = (SSC/(J-1.D0)-X(3))/1I

402 c

403 DO 100 K = 1,201

404 C

405 C => find point in interval

406 C

407 IF (K.EQ.1l) THEN

408 NEW(1) = MIN

409 ELSE

410 NEW(K) = NEW(K~1)+STEP

411 END IF

412 C

413 C => estimate posterior distribution

414 C

415 IF (NEW(K) .GE.LOW(l) .AND.NEW(K) .LE.HIGH (1)) THEN
416 W(10) = ((I*J+TAU)/2.D0)* (NEW(K)-MEAN (1)) **2
417 G(l) = X(1)

418 G(2) = X(2)

419 G(3) = X(3)

420 IP(l) =0

421 CALL DBCOAH(LFNC1,GRAD1,HESS1,3,G,1,LB,UB,S,1.D0,
422 3 1P, RP, X, LFIX)

423 C

424 IF (X(1).GT.0.D0) THEN

425 IF (X(2).GT.0.D0) THEN

426 IF (TYPE.NE.1l) THEN

427 TYPE = 1

428 WRITE(6,1) K,TYPE

429 1 FORMAT(/,' at ',I13,', type = ',I1,/)
430 END IF

431 CALL HESS1(3,X,H,3)

432 PMF (K,1) = DEXP(-LFIX-0.5D0*DLOG (DETERM (H) ) -CHUNK)
433 ELSE

434 IF (TYPE.NE.2) THEN

435 TYPE = 2

436 WRITE(6,1) K,TYPE

437 END IF

438 CALL ESTIM2(X(1),X(3),0UT)

439 PMF (K, 1) = DEXP (OUT-CHUNK)

440 END IF

441 ELSE

442 IF (X(2).GT.0.D0) THEN

443 IF (TYPE.NE.3) THEN
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TYPE = 3

WRITE (6,1) K,TYPE
END IF
CALL ESTIM3(X(2),X(3),0UT)
PMF (K, 1) = DEXP (OUT-CHUNK)

ELSE
IF (TYPE.NE.4) THEN
TYPE = 4
WRITE(6,1) K, TYPE
END IF

CALL ESTIM4(X(3),0UT)
PMF (K, 1) = DEXP (OUT-CHUNK)

END IF
END IF
ELSE
PMF (K,1) = 0.D0
END IF
Cc
C => estimate sampling theory distribution
C
IF (NEW(K) .GE.LOW(2) .AND.NEW(K) .LE.HIGH(2)) THEN
PMF (K, 2) = DEXP(-0.5D0*((NEW(K)~MEAN(2))/STDDEV (2)) **2)
ELSE
PMF (K,2) = 0.D0
END IF
100 CONTINUE
C
C normalize functions to proper probability distributions
C
CALL NRMLIZ (1)
CALL NRMLIZ (2)
C
WRITE(6,902) MEAN, STDDEV
902 FORMAT(//,' for comparable series:',
& //,' Bayes Posterior',5X, 'Sampling Predictive',
& //,1%X,F12.4,4X, 'mean', 4X,F12 .4,
& /,1%,F12.4,2X%X, 'std.dev.',2X,F12.4,//)
c
C write series to file
C
WRITE(9,4) (NEW(K),PMF(K,1),PMF(K,2),K=1,201)
4 FORMAT(Fl15.6,'t',F9.6,'t',F9.6)
C
RETURN
END

C****ttttttittt******t*i*******t*****tti******t*********

C subroutine for solicitation of prior parameters and
C input of data

ChREAAA AR KA AR RN AR AR AN A RARA R KRR AR AR R AR A AR R AR A AR AR R A AR AR A& k&

SUBROUTINE INPUTS

C
REAL*8 I,J,MU,SSC,SSE,SSR,TAU,W(10), YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W, YDOTDT
REAL*8 ALPHA(3),BETA(3),GAMMA(3),SUM, SS5Q, CSUMSQ, RSUMSQ
CHARACTER*1 ANSWER, LCYES, UCYES

C
LCYES = 'y!
UCYES = 'Y!



502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
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C

C solicit prior distribution parameters

C
801
802

811

812
813

815
816

817

821

822
823

825
826

WRITE (6,802)
FORMAT ('1Use diffuse priors for all parameters? (y/n)’')
CALL FREAD(5,'S:', ANSWER, 1)
IF ( (ANSWER.EQ.UCYES) .OR. (ANSWER.EQ.LCYES)) THEN
MU = 0.D0

TAU = 0.D0

ALPHA(1) = 0.DO
GAMMA (1) = 0.DO
ALPHA(2) = 0.DO,
GAMMA (2) = 0.DO
ALPHA(3) = 0.D0
GAMMA (3) = 0.DO

ELSE

WRITE(6,811)

FORMAT (//' Use diffuse prior for OVERALL MEAN? (y/n)')
CALL FREAD (5, 'S:',ANSWER, 1)

IF ( (ANSWER.EQ.UCYES) .OR. (ANSWER.EQ.LCYES)) THEN

MU = 0.DO
TAU = 0.DO
ELSE

WRITE (6,813)
FORMAT (//' Enter value for MU:')
CALL FREAD (5, 'R*8:°¢,MU}
WRITE(6,816)
FORMAT(//' Enter value for TAU:')
CALL FREAD (5, 'R*8:*, TAU)
IF(TAU.LE.0.D0) THEN
WRITE(6,817)
FORMAT (' ERROR: Value must exceed zero!!'’)
GOTO 815
END IF
END IF

WRITE(6,821)
FORMAT (//' Use diffuse prior for ROW VARIANCE? (y/n)’')
CALL FREAD({S5, 'S:',ANSWER, 1)
IF ( (ANSWER.EQ.UCYES) .OR. (ANSWER.EQ.LCYES)) THEN
ALPHA(l) = 0.DO
GAMMA (1) = C.DO
ELSE
WRITE (6,823)
FORMAT{//' Enter value for ALPHA:')
CALL FREAD (5, 'R*8:',ALPHA(1l))
IF (ALPHA(1) .LE.0.D0) THEN
WRITE (6,817)
GOTO 822
END IF
WRITE (6,826)
FORMAT (//' Enter value for BETA:')
CALL FREAD(S, 'R*8:',BETA(1))
IF(BETA(1l) .LE.0.D0O) THEN
WRITE (6,817)
GOTO 825
END IF
GAMMA (1) = 1.DO/BETA(1)
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832
833

835
836

841

842
843

845
846

e e e

END IF

WRITE(6,831)
831 FORMAT(//' Use diffuse prior for COLUMN VARIANCE? (y/n)"')
CALL FREAD (S, 'S:',ANSWER, 1)
IF ((ANSWER.EQ.UCYES) .OR. (ANSWER.EQ.LCYES)) THEN
ALPHA(2) = 0.D0
GAMMA (2) = 0.DO

ELSE

WRITE (6, 833)

FORMAT (//'

Enter value for ALPHA:')

CALL FREAD (5, 'R*8:',ALPHA(2))
IF (ALPHA(2) .LE.0.D0O) THEN
WRITE (6,817)

GOTO
END IF

832

WRITE (6, 836)

FORMAT (/ /"

IF(BETA(2) .LE.0.D0O) THEN
WRITE (6,817)

GOTO
END IF

835

GAMMA (2) = 1.DO/BETA(2)

END IF

WRITE(6,841)
FORMAT(//' Use diffuse prior for ERROR VARIANCE?
CALL FREAD (S5, 'S: ', ANSWER, 1)
IF ( (ANSWER.EQ.UCYES) .OR. (ANSWER.EQ.LCYES)) THEN
ALPHA(3) = 0.DO
GAMMA (3) = 0.DO

ELSE

WRITE (6,843)

FORMAT (//' Enter value for ALPHA:')

Enter value for BETA:')
CALL FREAD (5, 'R*8:',BETA(2))

CALL FREAD (5, 'R*8:"',ALPHA(3})
IF (ALPHA(3) .LE.0.D0) THEN
WRITE (6,817)
GOTO 842

END IF

WRITE (6, 846)

FORMAT (/ /"'

IF(BETA(3) .LE.0.DO) THEN
WRITE (6,817)

GOTO
END IF

845

GAMMA (3) = 1.D0O/BETA(3)

END IF
END IF

Enter value for BETA:')
CALL FREAD (S5, 'R*8:"',BETA(3))

WRITE(6,851) MU,TAU, (ALPHA(I),GAMMA(I), I=1,3)
851 FORMAT(//' Prior Distribution Parameters’,

/1"

/l
/l
/l

For OVERALL MEAN:

For ROW VARIANCE:

For COLUMN VARIANCE:

MU
TAU
ALPHA
1/BETA
ALPHA

', F30.
', F30.
', F30.
', F30.
', F30.

10,
10,
10,
10,
10,

(y/n)?')



618 & /" 1/BETA = ',F30.10,
619 & /' For ERROR VARIANCE: ALPHA = ',F30.10,
620 & /! 1/BETA = ',F30.10)
621 WRITE (6,852)

622 852 FORMAT(//' Change values? (y/n)')

623 CALL FREAD (5,'S:',ANSWER, 1}

624 IF { (ANSWER.EQ.UCYES) .OR. (ANSWER.EQ.LCYES)) GOTO 801
625 WRITE(7,851) MU, TAU, (ALPHA(I),GAMMA(I),I=1,3)
626 c

627 C enter sample data set descriptive statistics

628 c

629 900 WRITE(6,901)

630 901 FORMAT(///' Read sample statistics from file? (y/n)")
631 CALL FREAD (5, 'S:',ANSWER,1)

632 IF ( (ANSWER.EQ.UCYES) .OR. (ANSWER.EQ.LCYES)) THEN
633 READ (1,902) I,J,SUM,SSQ,CSUMSQ,RSUMSQ

634 902 FORMAT (F25.0)

635 YDOTDT = SUM/ (I*J)

636 SSC = CSUMSQ/I-I*J*YDOTDT**2

637 SSR = RSUMSQ/J~I*J*YDOTDT**2

638 SSE = SSQ-RSUMSQ/J-CSUMSQ/I+I*J*YDOTDT**2

639 ELSE

640 903 WRITE (6, 904)

641 904 FORMAT (/' Enter NUMBER OF ROWS:')

642 CALL FREAD(S, 'R*8:°',1I)

643 IF(I.LE.0.D0) THEN

644 WRITE (6,817)

645 GOTO 903

646 END IF

647 c

648 913 WRITE (6, 914)

649 914 FORMAT (' Enter NUMBER OF COLUMNS:')

650 CALL FREAD (S5, 'R*8:',J)

651 IF(J.LE.0.DQ) THEN

652 WRITE(6,817)

653 GOTO 913

654 END IF

655 c

656 923 WRITE (6, 924)

657 924 FORMAT (' Enter SSR:'")

658 CALL FREAD({S, 'R*8:"',SSR)

659 IF(SSR.LE.0.D0) THEN

660 WRITE (6,817)

661 GOTO 923

662 END IF

663 C

664 933 WRITE(6,934)

665 934 FORMAT (' Enter S5SC:')

666 CALL FREAD (5, 'R*8:',SSC)

667 IF(SSC.LE.0.D0O) THEN

668 WRITE (6,817)

669 GOTO 933

670 END IF

671 C

672 943 WRITE(6, 944)

673 944 FORMAT (' Enter SSE:')

674 CALL FREAD (5, 'R*8:',SSE)

675 IF(SSE.LE.0.DO) THEN



676 WRITE(6,817)

677 GOTO 943

678 END IF

679 C

680 WRITE (6, 954)

681 954 FORMAT (' Enter MEAN:')

682 CALL FREAD(5, 'R*8:',YDOTDT)

683 END IF

684 C

685 WRITE(6,961) I,J,SSR,SSC,SSE, YDOTDT

686 961 FORMAT(//' Data set statistics:'

687 & /7! # of rows = I ="'F30.10,
688 & /" # of columnsg = J = ',F30.10,
689 & A sum of squares, rows = SSR = ',F30.10,
690 & /' sum of squares, columns = SSC = ',F30.10,
691 & /! sum of squares, error = SSE = ',F30.10,
692 & /! overall mean = Y.. = ',F30.10)
693 WRITE (6,852)

694 CALL FREAD (S5, 'S:',ANSWER, 1)

695 IF ( (ANSWER.EQ.UCYES) .OR. (ANSWER.EQ.LCYES)) GOTO 800
696 WRITE(7,961) I,J,SSR,SSC,SSE,YDOTDT

697 Cc

698 WRITE (6, 962) SSR/(I-1.D0),SSC/(J-1.D0),

698.5 & SSE/((1-1.D0)*(J-1.D0))

699 WRITE(7,962) SSR/(1-1.D0),SSC/(J-1.D0),

699.5 & SSE/ ((I-1.D0) *(J-1.D0))

700 962 FORMAT(/' MSR = ',F30.10,

701 & /' MSC = ',F30.10,

702 & /' MSE = ',F30.10)

703 C

704 C set common exponent values

705 C

706 W(l) = (I*J-I1-J+2.DO*ALPHA(3)+3.D0)/2.D0

707 W(2) = (I+2.DO*ALPHA(1)+1.D0)/2.D0

708 W(3) = (J+2.DO*ALPHA(2)+1.D0)/2.D0

709 W(4) = 0,5D0

710 W(6) = SSE/2.D0+GAMMA (3)

711 W{7) = SSR/2.D0+GAMMA (1)

712 W(8) = SSC/2.D0+GAMMA (2)

713 W(9) = (I*J*TAU* (MU-YDOTDT) **2)/(2.D0* (I*J+TAU))

714 c

715 RETURN

716 END

'71’] C**t***************'********************************************
718 C subroutine for sampling theory results

’]19 C*tt*tt*ti***t****i**************i*t*********************t*****
720 SUBROUTINE SMPDAT

721 cC

722 REAL*8 I,J,MU,SSC,SSE, SSR, TAU,W(10) , YDOTDT
723 COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W,YDOTDT

724 REAL*8 MEAN(2), STDDEV (2) ,PMF (201, 2) ,NEW(201)
725 COMMON /0OUT/ MEAN, STDDEV, PMF, NEW

726 INTEGER INDEX, IPARAM(7),K,L

127 REAL*8 DELT,DET, DETERM, LNFX,R (3, 3) ,RINDEX, RPARAM(7),
728 & SUM,X(3),XGUESS (3),XSCALE(3), VAR

729 Cc

730 XGUESS(3) = SSE/((I-1.D0)*(J-1.D0))

731 XGUESS(2) = (S8SC/(J-1.D0)-XGUESS(3)) /I
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XGUESS (1) = (SSR/{I-1.D0)-XGUESS(3))/J
WRITE (6,3) XGUESS
WRITE (7,3) XGUESS

3 FORMAT(//,' row variance = ',F20.4,
& /,' column variance = ',F20.4,
& /,' error variance = ',F20.4)

IF (XGUESS (1) .LT.0.D0) THEN
WRITE(6,901)
WRITE(7,901)
901  FORMAT(/,' ALERT using ZERO for ROW var.')
XGUESS (1) = 0.DO
END IF
IF (XGUESS(2).LT.0.D0) THEN
WRITE (6, 902)
WRITE(7,902)
902 FORMAT(/,' ALERT using ZERO for COLUMN var.')
XGUESS (2) = 0.DO
END IF

MEAN(2) = YDOTDT
VAR = (XGUESS(3)+J*XGUESS (1)
& +I*(J+1.D0) *XGUESS (2))/ (I*J)
STDDEV(2) = DSQRT(VAR)
WRITE(6,2) MEAN(2), STDDEV (2}
2 FORMAT(//,' Sampling theory mean = ',F12.4,
& /! standard deviation = ',F12.4,/)

RETURN
END

C‘k*****'kt***'k*'k****'k********************t’k*********************

C subroutine to find selected percentiles
c***********'k***'A'***it*****************************************
SUBROUTINE PRCNTL
c
REAL*8 1,J,MU,SSC,SSE,SSR, TAU,W(10), YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W,YDOTDT
REAL*8 MEAN (2) , STDDEV(2) ,PMF (201,2) ,NEW(201)
COMMON /OUT/ MEAN, STDDEV, PMF, NEW
INTEGER INDEX, K
REAL*8 C(10),PRCL(10,2),DELT, SUM

DATA C/.005,.025,.05,.125,.25,.75,.875,.95,.975,.995/

find selected percentiles for posterior distribution

(e NeKe!

K=1
SUM = 0.D0
DO 300 INDEX=1,201
SUM = SUM+PMF (INDEX, 1)
IF ((K.LE.10) .AND. (SUM.GE.C(K))) THEN
PRCL (K, 1) = NEW(INDEX)
K = K+1
END 1IF
300 CONTINUE
C
C sampling theory prediction intervals
C
PRCL(1,2) = MEAN(2)~2.576*STDDEV(2)
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.96*STDDEV (2)

790 PRCL(2,2) = MEAN(2)-~1

791 PRCL{3,2) = MEAN(2)~1.645*STDDEV(2)

792 PRCL(4,2) = MEAN(2)-~1.15*STDDEV(2)

793 PRCL(5,2) = MEAN(2)~0.674*STDDEV (2)

794 PRCL(6,2) = MEAN(2)+0.674*STDDEV(2)

795 PRCL(7,2) = MEAN(2)+1.15*STDDEV(2)

796 PRCL(8,2) = MEAN(2)+1.645*STDDEV(2)

797 PRCL(9,2) = MEAN(2)+1.96*STDDEV(2)

798 PRCL(10,2) = MEAN(2)+2.576*STDDEV(2)

799 C

800 C display selected intervals

801 C

802 WRITE(7,902) MEAN, STDDEV,

803 & PRCL(5,1),PRCL(6,1),PRCL(5,2),PRCL(6,2),

804 & PRCL(4,1),PRCL(7,1),PRCL(4,2),PRCL(7,2),

805 & PRCL(3,1),PRCL(8,1),PRCL(3,2),PRCL(8,2),

806 & PRCL(2,1),PRCL(9,1),PRCL(2,2),PRCL(9,2),

807 & PRCL(1,1),PRCL(10,1),PRCL(1,2),PRCL(10,2)

808 WRITE (6,902) MEAN, STDDEV,

809 & PRCL(S5,1),PRCL(6,1),PRCL(5,2),PRCL(6,2),

810 & PRCL(4,1),PRCL(7,1),PRCL(4,2),PRCL(7,2),

811 & PRCL(3,1),PRCL(8,1),PRCL(3,2},PRCL(8,2),

812 & PRCL(2,1),PRCL(9,1),PRCL{(2,2),PRCL(9,2),

813 & PRCL(1,1),PRCL(10,1),PRCL(1,2),PRCL(10,2)

814 902 FORMAT(///,9X, 'Bayes Posterior',

814. & 15X, 'Sampling Predictive',/

815 & /,9X,F12.4,9X, 'mean', 9X,F12.4,

816 & /,9%X,F12.4,7X, *std.dev.',7X,F12.4,

817 & ///,' Comparable Intervals:',/

818 & /,6X,'Bayesian Theory',24X, 'Sampling Theory',

819 & /,5X, 'HPD Credible Set', 22X, 'Prediction Interval',
820 & /,1%X,24('*'),15X%,24('*"),

821 & /,4X,'Lower',8X, 'Upper', 5X, 'probability’',

822 & 5X, ‘Lower', 8X, 'Upper’,

823 & /,1X,11(*="),2X,11(*-*),15X,11('~"),2X,11('-"),
824 & /,1X,F11.4,2X,F11.4,6X, '50%', 6X,F11.4,2X,F11.4,
825 & /,1X,F11.4,2%X,F11.4,6X,"'75%',6X,F11.4,2X,F11.4,
826 & /,1X,F11.4,2%X,F11.4,6X%X,'90%"',6X,F11.4,2X,F11.4,
827 & /,1X,F11.4,2%X,F11.4,6X%X,'95%"',6X,F11.4,2X,F11.4,
828 & /,1X,F11.4,2X,F11.4,6X,'99%"',6X,F11.4,2X,F11.4,/////)
829 C

830 RETURN

831 END

832 Ct**************i********i*****t******************t*****i*t*i*t
833 C subroutine for normalizing function to proper distribution
834 C and for calculating mean and variance

835 Citti***************tt**iiﬁ****t*********t**t************i***i*
836 SUBROUTINE NRMLIZ (M)

837 C

838 ’ REAL*8 MEAN (2), STDDEV (2),PMF (201,2) ,NEW(201)
839 COMMON /0QUT/ MEAN, STDDEV, PMF, NEW

840 INTEGER K, M

841 REAL*8 SUM

842 Cc

843 SUM = PMF (1,M)

844 DO 200 K = 2,201

845 SUM = SUM+PMF (K, M)

846 200 CONTINUE
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MEAN (M) = 0.D0
STDDEV (M) = 0.DO
DO 210 K = 1,201

PMF (K,M) = PMF (K,M)/SUM

MEAN (M) = MEAN (M) +NEW (K) *PMF (K, M)
STDDEV (M) = STDDEV (M) +NEW(K) **2*PMF (K, M)

210 CONTINUE
STDDEV (M) = DSQRT (STDDEV (M) ~MEAN (M) **2)

RETURN
END

C****i**************t****i*****i****ﬁ***i****i****t************

C function to calculate determinant of 3x3 matrix
C*t*************************************************t**********

REAL FUNCTION DETERM*8 (M)

c
REAL*8 M(3, 3)
C
DETERM = +M(1,1)*M(2,2)*M(3,3)+M(1,2)*M(2,3)*M(3,1)
& ' +M (1, 3)*M(2,1)*M(3,2)-M(1,1)*M(2,3) *M(3,2)
& "M(ll 2) *M(Z, 1) *M(3r 3)-M(1l 3) *M(zlz) *M(3I1)
c
RETURN
END

c***i***t*******i**************t********t****t************i****

C 1log of inverse of function to be integrated
C type #1 : all modes positive
C****t**t**tt****t****t*t*********t****ﬁ*****t*************t**t
SUBROUTINE LFNC1 (N, X, FVAL)
c
REAL*8 I,J,MU,SSC,SSE,SSR,TAU,W(10),YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR, TAU, W, YDOTDT
INTEGER N
REAL*8 FVAL,X(3),V1,Vv2,V3,V4,V5

V1l = X(3)

Ve X(3)+J*X (1)

v3 X(3)+I*X(2)

V4 X(3)+I*X(1)+I*X(2)

VS X(3)+JI*X(1)+(I+I*J+TAU) *X(2)

FVAL = W(1)*DLOG (V1)+W(2) *DLOG(V2)+W(3) *DLOG(V3)
& +W(4) *DLOG (V4) +W (5) *DLOG (V5)
& +W(6) /VI+W(T7)/V2+W(B) /V3I+W(9) /V4+W(10) /V5

RETURN

END
C****t*****tt***t*******ﬁ******i*****t*t**t*****************it*
C gradient vector of log of inverse of function
C type #1 : all modes positive

CAXA AR R KRR AR A AR RN AR AR RN R AR AR KRR RN R RN R AR R AR AR RN R AAR AR KR AR R AR AR A X

SUBROUTINE GRADI1 (N, X, G)

C
REAL*8 I,J,MU,SSC,SSE, SSR, TAU,W(10),YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR, TAU, W, YDOTDT
INTEGER N
REAL*8 G(3),X(3),Q1,V1,Vv2,V3,V4,V5

Cc
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905 - Q1 = I+I*J+TAU

906 V1l = X(3)

907 V2 = X(3)+J3*X (1)

908 V3 = X{3)+I*X(2)

909 V4 = X(3)+I*X(1)+I*X(2)

910 V5 = X(3)+I*X(1)+ (1+I*J+TAU) *X(2)

911 C

912 G(l) = J*((W(2)-W(7)/V2)/V2+(W(4)-W(9)/V4a)/Vi
913 & +(W(5)-W{10)/V5)/V5)

914 G(2) = I*((W(3)-W(8)/V3)/V3+(W(4)-W(9)/V4)/V4)
915 & + (W (5)-W(10)/V5) *Q1/VS

916 G(3) = (W(1)-W(6)/V1)/V1+(W(2)-W(T7)/V2)/V2
917 & +(W(3)-W(8)/V3)/V3+(W(4)~-W(9)/V4)/V4
918 & +(W(5)-W(10) /V5) /VS

918.5 C

919 RETURN

920 END

921 C****************************ﬁ**************t******************
922 C Hessian matrix of log of inverse of function
923 C type #1 : all modes positive

924 C********************‘k**i****i**t********t***t*******it********
925 SUBROQUTINE HESS1(N,X,H,LDH)

926 c

927 REAL*B I,J,MU,SSC,SSE,SSR,TAU,W(10),YDOTDT
928 COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU, W, YDOTDT
929 INTEGER LDH,N

930 REAL*8 H(3,3),X(3),01,Vv1,v2,V3,V4,V5

931 C

932 Q1 = I+I*J+TAU

933 vVl = X(3)

934 V2 = X({3)+I*X(1)

835 V3 = X(3)+I*X(2)

936 V4 = X(3)+IJ*X(1)+I*X(2)

937 VS = X(3)+JI*X(1)+(I+I*J+TAU) *X(2)

938 o

939 H(1,1) = =J**2*% ((W(2)-2.DO*W(7)/V2)/V2*x*x2
940 & +(W(4)~-2.D0*W(9) /V4) /V4*x*2
941 & +(W(5)~2.DO*W(10)/V5) /V5%x*2)
942 H(1,2) = =J*((W(4)-2.DO0*W(9)/V4)*I/V4*x*2

943 & +{W(5)~-2.D0*W(10) /VS) *Q1/V5**2)
944 H(1,3) = -J*{((W(2)=-2.DO*W(7)/V2)/V2%x*x2

945 & +(W(4)-2.DO*W(9) /V4) /Vaxx2

946 & + (W(5)=-2.D0O*W(10) /VS) /V5**x2)

947 H(2,1) = H{(1,2)

948 H(2,2) = —I**2*((W(3)-2.DO*W(8)/V3) /V3**2
949 & +(W(4)-2.DO*W(9) /V4) /V4**2)
950 & = (W(5)-2.DO*W(10) /VS) * (Q1/V5) *x*2
951 H(2,3) = -I*((W(3)=-2.D0*W(8)/V3)/V3*x*2

952 & +(W(4)-2.DO*W(9) /V4) /Va**2)

953 & -(W(5)-2.D0*W(10) /V5) *Q1/V5**2

955 H(3,2) = H(2,3)

956 H(3,3) = —(W(1)=-2.DO*W(6)/V1)/V1**2

956.5 & -(W(2)-2.DO0*W(7)/V2)/V2*%2

957 & - (W{3)-2.DO*W(8)/V3)/V3*xx2

957.5% & - (W(4)-2.DO*W(9)/V4) /V4**2

958 & - (W(5)-2.DO*W(10) /V5)/V5**2

959 C
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962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
9717
978
979
580
981
982
983
984
985
986
987
988
989
930
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
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RETURN

END
C***************i*****************i**i********************i****
C 1log of inverse of function to be integrated
C type #2 : column mode = 0 ; row and error modes positive
C****i*********i************t*********t*t*****************i****

SUBROUTINE LFNCZ2 (N, X,FVAL)
o

REAL*8 I,Jd,MU,SSC,SSE,SSR, TAU,W(10),YDOTDT

COMMON /INN/ I,J,MU,SSC,SSE, SSR,TAU,W,YDOTDT

INTEGER N

REAL*8 FVAL,X(2),02,Q03,04,Q5,V1,V2,DEN2

Q2 = I*W(4)+ (I+I*J+TAU) *W(5)

Q3 = I*W(9)+ (I+I*J+TAU)*W(10)

Q4 = W(2)+W(4)+W(5)

Q5 = W(7)+W(9)+W(10)

V1 = X(2)

V2 = X(2)+J*X (1)

DEN2 = (W(3)-W(8)/V1)*I/V1-(Q2-Q3/V2)/V2

FVAL = (W(1)+W(3)) *DLOG{V1)+Q4*DLOG(V2)+(W(6)+W(8))/V1
& +Q5/V2+DLOG (DEN2)

RETURN

END
C*********t***tt*****i*********t****tti**t*t***t***********t***
C gradient vector of log of inverse of function
C type #2 : column mode = 0 ; row and error modes positive
thttkttt*titttt*******t*******t******i*ti*t***********i******t

SUBROUTINE GRADZ2 (N, X,G)
C

REAL*8 I,J,MU,SSC,SSE,SSR,TAU,W(10), YDOTDT

COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W,YDOTDT

INTEGER N

REAL*8 G(2),X(2),Q2,03,04,05,V1,V2,DEN2

Q2
Q3
Q4

I*W(4)+ (I+I*J+TAU) *W(S)

I*W(9)+ (I+I*J+TAU) *W(10)

W(2)+W(4) +W(5)

Q5 W(7)+W(9)+W(10)

V1 X(2)

V2 = X(2)+JI*X (1)

DEN2 = (W(3)-W(8)/V1)*I/V1-(Q2-Q3/V2)/Vv2

G(1) = J*((Q4-Q5/V2)/V2~(Q2-2.D0*Q3/V2)/V2**2/DEN2)
G(2) = (W(1)+W(3)-(W(6)+W(8))/V1)/V1+(Q4-Q5/v2)/V2
& -((W(3)=-2.DO*W(8) /V1) *I/V1**2

& +(Q2-2.D0*Q3/V2) /V2**2) /DEN2

RETURN
END
C*titt***t*ttttt*tk*t********t*ttit*tt*t***t**t*************tt*
C Hessian matrix of log of inverse of function
C type #2 : column mode = 0 ; row and error modes positive
Cﬁttittt*ttttttitti**t**t****i**t*tt*titttt*iit*t*****t*i**tt**
SUBROUTINE HESS2 (N, X, H, LDH)
C



1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1651
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

1063.

1064
1065
1066

1066.

1067
1068
1069
1070
1071
1072
1073
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REAL*8 1,J,MU, SSC, SSE, SSR, TAU,W(10) , YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR, TAU,W,YDOTDT
INTEGER LDH,N

REAL*8 H(2,2),X(2),02,Q3,Q04,Q5,V1,V2,DEN2

c
Q2 = I*W(4)+ (I+I*J+TAU)*W(5)
Q3 = I*W(9)+ (I+I*J+TAU)*W(10)
Q4 = W(2)+W(4)+W(5)
Q5 = W(7)+W(9)+W(10)
V1l = X(2)
V2 = X(2)+J*X(1)
DEN2 = (W(3)-W(8)/V1)*I/V1-(Q2-Q3/V2)/V2
c
H(1,1) = -(Q4-2.D0*Q5/V2)*(J/V2)**2
& +(Q2-3.D0*Q5/V2) *2.D0*J/V2**3/DEN2
& -((Q2-2.D0*Q3/V2)*J/V2**2/DEN2) **2
H(1,2) = ~-(Q4-2.D0*Q5/V2)*J/V2%*2
& +(02-3.D0*Q3/V2)*2 ,D0*J/V2**3/DEN2
& -(Q2-2.D0*Q3/V2) *J/V2**2
& * ((W(3)-2.DO*W(B) /VL1) *I/V1**2
& +(Q2~2.D0*Q3/V2) /V2**2) /DEN2**2
H(2,1) = H(1,2)
H(2,2) = = (W(1)+W(3)-2.DO*(W(6)+W(B))/V1)/V1**2
& - (Q4-2.D0*Q5/V2) /V2**2
& +2.DO* ((W(3)-3.DO*W(B8) /V1) *I/V1i**3
& +(Q2-3.D0*Q3/v2) /v2**3) /DEN2
& = (((W(3)-2.DO*W(8) /V1) *I/V1**2
& +(Q2-2.D0*Q3/V2) /V2**2) /DEN2) **2
C
RETURN
END

Ct**ﬂ**ti*i**t*********t*****t*********************************

C log of inverse of function to be integrated .
C type #3 : row mode = 0 ; column and error modes positive
C*t*******i****t**********t******ﬁ******i*********i************
SUBROUTINE LFNC3 (N, X,FVAL)
C
REAL*8 I,J,MU,SSC,SSE,SSR, TAU,W(10),YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE, SSR,TAU,W,YDOTDT
INTEGER N
REAL*8 FVAL,X(2),V1,V3,V6,DEN3

V1

X(2)

V3 X(2)+I*X(1)

vé X(2)+ (I+I*J+TAU) *X (1)

DEN3 = (W(2)=W(7)/V1)/V1-(W(4)-W(9)/V3)/V3
& - (W(5)-W(10)/V6)/V6

FVAL = (W(1)+W(2))*DLOG(V1)+ (W(3)+W(4))*DLOG(V3)
& +W(5) *DLOG (V6) + (W(6)+W (7)) /V1+(W(8)+W(9)) /V3
& +W(10) /V6+DLOG (J*DEN3)

RETURN

END
C*tt*********t*i*t****i**tt**i********i*********i*******t**t***
C gradient vector of log of inverse of function

C type #3 : row mode = 0 ; column and error modes positive
C*aitti*ttt*i*tt*t***ti****it**t***tt*******t****tt***tt****t**



1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1085.5
1086
1087
1088
1089
1090
1091
1092
1093
1093.5
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1112.5
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
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SUBROUTINE GRAD3 (N, X, G)

REAL*8 1,J,MU, 8SC,SSE,SSR, TAU,W(10),YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W,YDOTDT
INTEGER N

REAL*8 G(2),X%X(2),01,Vv1,Vv3,V6,DEN3

I+I*J+TAU
X(2)

V3 = X(2)+I*X (1) _

V6 = X({2)+(I+I*J+TAU)*X (1)

DEN3 = (W(2)=-W(7)/V1)/V1-(W(4)-W(9)/V3)/V3
& -(W(5)-W(10) /V6) /V6

Q1
V1

It

1

G(1) = (W(3)+W(4)~-(W(8)+W(9))/V3)*1/V3
& +(W(S)-W({10) /V6) *Q1/V6—-((W(4)-2.DO*W(9) /V3) *I/V3**2
& +(W(5)-2.DO*W(10)/V6) *Q1/V6**2) /DEN3
G(2) = (W(L)+W(2)-(W(6)+W(T7))/V]1)/V1
+(W(3)+W(4) = (W(B)+W(9)) /V3)/V3+(W(5)~W(10)/V6)/V6
~{(W(2)~2.DO*W(7)/V1) /V1**2
+(W(4)-2.DO*W(9) /V3)/V3**2
+(W(5)-2.D0O*W(10)/V6)/V6**2) /DEN3

2

RETURN

END
C*********tki********************i***************************t*
C Hessian matrix of log of inverse of function
C type #3 : row mode = 0 ; column and error modes positive
C***t***t**i*t***********************tﬁt**********tt********i**

SUBROUTINE HESS3 (N, X, H,LDH)
C

REAL*8 I,J,MU, SSC, SSE, SSR, TAU,W(10), YDOTDT

COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W, YDOTDT

INTEGER LDH,N

REAL*8 H(Z2,2),%X(2),Q1,Vv1,V3,Vé6,DEN3

Q1 = I+I*J+TAU

vVl = X(2)

V3 = X(2)+I*X(1)

V6 = X (2)+ (I+I*J+TAU) *X (1)

DEN3 = (W{2)=-W(7)/V1)/V1-(W(4)-W(9)/V3)/V3
& -(W(5)-W(10)/V6)/VE6

H(1,1) = ~(W(3)+W(4)-2.DO* (W(8)+W(9))/V3)*(I/V3)**2
~(W(5)-2.DO*W(10)/V6) *(QL/VE) **2
+2.D0* ((W(4)~3.DO*W(9) /V3) *I*x2/y3*x3
+(W(5)-3.DO*W(10)/V6) *Q1l**2/V6**3) /DEN3
~({((W(4)-2.D0*W(9)/V3)*I/V3**2
+(W(5)-2.DO0*W{10) /V6)*Q1/VE**2) /DEN3) **2
H(1,2) = =(W(3)+W(4)-2.DO* (W(B)+W(9))/V3)*I/V3**2
~(W(5)-2.D0O*W(10)/V6) *Q1/VE*x*2
+2.D0* ((W(4)-3.DO*W(9)/V3)*I/V3**3
+(W(5)-3.D0*W(10)/V6)*Q1/V6**3) /DEN3
-~ {(W(2)=-2.DO*W(7)/V1) /V1%x*2
+{W(4)-2.DO*W(9)/V3)/V3x*2
+(W(5)=-2.D0*W(10) /V6) /VE**2)
*((W(4)-2.DO*W(9)/V3)*T/V3**2
+{W(5)-2.DO*W(10)/V6) *Q1/VE**2) /DEN3**2

e e

e R



1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186

Sl

H(2,1) = H(1,2)

H(2,2) = —(W(1)+W(2)-2.DO* (W(6)+W (7)) /V1)/V1**2
~(W(3)+W(4)-2.DO* (W(B)+W(9)) /V3) /V3**2
~(W(5)~2.DO*W(10) /V6) /VE**2
+2.D0* ((W(2)-3.DO*W(7)/V1)/V1**3

+(W(4)~3.DO*W(9) /V3)/V3*x*3
+(W(5)-3.D0*W(10) /V6)/V6**3) /DEN3
-~ (((W(2)~2.DO*W(7)/V1)/V1**2
+(W(4)~2.D0*W(9) /V3) /V3**2
+(W(5)~2.D0*W(10) /V6) /VE**2) /DEN3) xx2

R R

RETURN
END
C*ﬁ***’k**********'k*********************************************
C 1log of inverse of function to be integrated
C type #4 : row mode = column mode = 0 ; error mode positive
C**************************************************************
SUBROUTINE LFNC4(N,V1,FVAL)
C N .
REAL*8 I,J,MU,SSC,SSE, SSR, TAU,W(10), YDOTIDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W,YDOTDT
INTEGER N
REAL*8 DEN4, FVAL,Q2,03,Q04,Q5,Q6,Q7,V1

Q2 = I*W(4)+ (I+I*J+TAU) *W(5)

Q3 I*W(9)+ (I+I*J+TAU) *W(10)

Q4 W(2)+W(4)+W(5)

Q5 W(7)+W(9)+W(10)

Q6 I*W(3)+I*W(4)+ (I+I*J+TAU) *W(5)

Q7 I*W(B)+I*W(9)+ (I+I*J+TAU) *W(10)

DEN4 = (Q4*Q6-Q2)*V1**2-(Q4*Q7+Q5*Q6-2.D0*Q3) *V1+Q5*Q7

FVAL = (W(1)+W(3)+Q4-4.D0)*DLOG(V1)+ (W(6)+W(8)+Q5)/V1
& +DLOG (J*DEN4)

RETURN

END
C****ti*******t*'k*i********************************************
C gradient vector of log of inverse of function
C type #4 : row mode = column mode = 0 ; error mode positive
Ctt***i********************************i********'k**************

SUBROUTINE GRAD4 (N, V1,G)
C

REAL*8 I,J,MU,S8SC,SSE, SSR, TAU,W(10),YDOTDT

COMMON /INN/ I,J,MU,SSC,SSE, SSR, TAU, W, YDOTDT

INTEGER N

REAL*8 DEN4,G(1),Q2,Q3,04,0Q5,0Q6,Q7,V1

Q2 = I*W(4)+ (I+I*J+TAU) *W(5)

Q3 = I*W({9)+ (I+I*J+TAU) *W(10)

= W(2)+W(4) +W(5)

Q5 = W(7)+W(9)+W(10)

Q6 = I*W(3)+I*W(4)+ (I+I*J+TAU)*W(5)

Q7 = I*W(B)+I*W(9)+(I+I*J+TAU)*W(10)

DEN4 = (Q4*Q6-Q2) *V1**2-(Q4*Q7+Q5*%0Q6-2.D0*Q3) *V1+Q5*Q7

G(l) = (W(1)+W(3)+Q4-4.D0-(W(6)+W(8)+Q5)/Vl)/Vl
& +(2.D0*V1*(Q4*Q6-Q2) -Q4*Q7-Q5*Q6+2.D0*Q3) /DEN4



1187
1188
1189
1190
1191
1182
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

1207 -

1208
1209
1210
1211
1212
1213
1214

318

RETURN

END

C***'k‘k**‘k*t*****ttt*'k**************i*t**'k**********************

C Hessian matrix of log of inverse of function
C type #4 : row mode = column mode = (0 ; error mode positive
C*************'k**************t******************************t**

SUBROUTINE HESS4(N,V1,H,LDH)

C

REAL*8 I,J,MU, SSC,SSE, SSR, TAU,W(10) , YDOTDT
COMMON /INN/ I,J,MU,SSC,SSE,SSR,TAU,W,YDOTDT
INTEGER LDH,N

REAL*8 H(1l,1),Q2,Q3,04,Q5,Q6,Q7,V1,DEN4

Q2
Q3
Q4
Q5
190
Q7

= I*W(4)+ (I+I*J+TAU) *W(5)
I*W(9)+(I+I*J+TAU) *W(10)
W(2)+W(4) +W(5)

W(7)+W(9)+W(10)

I*W(3) +I*W(4)+ (I+I*J+TAU) *W(5)
I*W(8)+I*W(9)+ (I+I*J+TAU)*W(10)

DEN4 = (Q4*Q6-Q2)*V1**2-(04*Q7+Q5*Q6-2.D0*Q3) *V1+Q5*Q7

H(1,1) =-(W(1)+W(3)+Q4-4.D0-2.DO0* (W(6)+W(8)+Q5)/V1)/V1**2

+2.D0* (Q4*Q6-Q2) /DEN4
-((2.D0*V1* (Q4*Q6-Q2) -Q4*Q7~-Q5*Q6+2.D0*Q3) /DENYG) **2

RETURN

END
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APPENDIX P
SUFFICIENT STATISTICS PROGRAM

# Use Description

1 Input Earnings Matrix

2 Output Sample Sufficient Statistics

5 Input *SOURCE*

6 Output *SINK*
C****************************************************

C program to calculate sample sufficient statistics

c

Cxrhxx%x

901

902

903

100

enter data by ROW
AAAKKAKAAAKAAKA AKX AAKAAAAAAAAARRRAAKN Ak Ak khkkkhkk kkhkkkkx
INTEGER I,J,NCOL, NROW

REAL*8 CSUM(50),RNCOL, RNROW, CSUMSQ, RSUMSQ,
& RSUM(2000),SUM,SSQ,Y(2000,50)

WRITE (6, 901)

FORMAT (' # of rows?')
CALL FREAD(5, 'I:',NROW)
RNROW = DFLOAT (NROW)
WRITE (6, 902)

FORMAT (' # of columns?')
CALL FREAD(5,'I:',NCOL)
RNCOL = DFLOAT (NCOL)

READ (1, 903) (Y (1,J),J=1,NCOL)
FORMAT (50F3.0)
CSUM(1) = Y(1,1)
RSUM(1) = Y(1,1)
SUM = Y(1,1)
SSQ = Y(1,1)**2
DO 100 J=2,NCOL
CSUM(J) = Y(1,J)
RSUM(1) = RSUM(1)+Y(1,J)
SUM = SUM+Y (1, J)
SSQ = SSQ+Y(1,J) **2
CONTINUE

DO 200 I=2,NROW
READ (1, 903) (Y(I,J),J=1, NCOL)
CSUM(1) = CSUM(1)+Y(I,1)
RSUM(I) = Y(I,1)

SUM = SUM+Y(I,1)
SSQ = SSQ+Y (I, 1)**2
DO 200 J=2,NCOL



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

200

300

400

210

32

CSUM (J) CSUM(J) +Y (I,J)

RSUM(I) RSUM(I)+Y (I, J)

SUM = SUM+Y(I,J)

SSQ = SSQ+Y(I,J)**2
CONTINUE

RSUMSQ = RSUM(1) **2
DO 300 I=2,NROW
RSUMSQ = RSUMSQ+RSUM(I) **2

CSUMSQ = CSUM(1) **2
DO 400 J=2,NCOL
CSUMSQ = CSUMSQ+CSUM(J) **2

WRITE (2, 910) RNROW, RNCOL, SUM, SSQ, CSUMSQ, RSUMSQ
FORMAT (F30.10)

STOP
END
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